in

Dry corridors opened by fire and low CO2 in Amazonian rainforest during the Last Glacial Maximum

[adace-ad id="91168"]
  • 1.

    Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563 (2000).

    Article 

    Google Scholar 

  • 2.

    Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).

    Article 

    Google Scholar 

  • 3.

    Carnaval, A. C. & Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 35, 1187–1201 (2008).

    Article 

    Google Scholar 

  • 4.

    Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C. & Bush, M. B. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 85 (1996).

    Article 

    Google Scholar 

  • 5.

    Burbridge, R. E., Mayle, F. E. & Killeen, T. J. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat. Res. 61, 215–230 (2004).

    Article 

    Google Scholar 

  • 6.

    Bush, M. B. & Silman, M. R. Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. J. Quat. Sci. 19, 677–684 (2004).

    Article 

    Google Scholar 

  • 7.

    Cowling, S. A., Maslin, M. A. & Sykes, M. T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat. Res. 55, 140–149 (2001).

    Article 

    Google Scholar 

  • 8.

    Claussen, M., Selent, K., Brovkin, V., Raddatz, T. & Gayler, V. Impact of CO2 and climate on Last Glacial Maximum vegetation—a factor separation. Biogeosciences 10, 3593–3604 (2013).

    Article 

    Google Scholar 

  • 9.

    O’ishi, R. & Abe-Ouchi, A. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum. Clim. Past 9, 1571–1587 (2013).

    Article 

    Google Scholar 

  • 10.

    Hopcroft, P. O. & Valdes, P. J. Last Glacial Maximum constraints on the Earth system model HadGEM2-ES. Clim. Dyn. 45, 1657–1672 (2015).

    Article 

    Google Scholar 

  • 11.

    Hermanowski, B., da Costa, M. L. & Behling, H. Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quat. Res. 77, 138–148 (2012).

    Article 

    Google Scholar 

  • 12.

    Fontes, D. et al. Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quat. Sci. Rev. 173, 161–180 (2017).

    Article 

    Google Scholar 

  • 13.

    D’Apolito, C., Absy, M. L. & Latrubesse, E. M. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat. Sci. Rev. 76, 140–155 (2013).

    Article 

    Google Scholar 

  • 14.

    AdrianQuijada-Mascareñas, J. et al. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. J. Biogeogr. 34, 1296–1312 (2007).

    Article 

    Google Scholar 

  • 15.

    Prado, D. E. & Gibbs, P. E. Patterns of species distributions in the dry seasonal forests of South America. Ann. MO Bot. Gard. 80, 902–927 (1993).

    Article 

    Google Scholar 

  • 16.

    Cardoso Da Silva, J. M. & Bates, J. M. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. AIBS Bull. 52, 225–234 (2002).

    Google Scholar 

  • 17.

    da Silva, J. M. C. Biogeographic analysis of the South American Cerrado avifauna. Steenstrupia 21, 49–67 (1995).

    Google Scholar 

  • 18.

    Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W. & Costa, G. C. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695–1706 (2012).

    Article 

    Google Scholar 

  • 19.

    Wuster, W. et al. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14, 1095–1108 (2005).

    Article 

    Google Scholar 

  • 20.

    Prentice, I. C. et al. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25, GB3005 (2011).

    Article 

    Google Scholar 

  • 21.

    Colinvaux, P. A., De Oliveira, P. E. & Bush, M. B. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat. Sci. Rev. 19, 141–169 (2000).

    Article 

    Google Scholar 

  • 22.

    Bush, M. B. Climate science: the resilience of Amazonian forests. Nature 541, 167 (2017).

    Article 

    Google Scholar 

  • 23.

    Mayle, F. E., Beerling, D. J., Gosling, W. D. & Bush, M. B. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the Last Glacial Maximum. Philos. Trans. R. Soc. Lond. B 359, 499–514 (2004).

    Article 

    Google Scholar 

  • 24.

    Costa, G. C. et al. Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob. Ecol. Biogeogr. 27, 285–297 (2018).

    Article 

    Google Scholar 

  • 25.

    Wilson, J. B. & Agnew, A. D. in Advances in Ecological Research Vol. 23 (eds Begon, M. & Fitter, A. H.) 263–336 (Academic Press, 1992).

  • 26.

    Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New. Phytol. 201, 908–915 (2014).

    Article 

    Google Scholar 

  • 27.

    Aleixo, A. & de Fátima Rossetti, D. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? J. Ornithol. 148, 443–453 (2007).

    Article 

    Google Scholar 

  • 28.

    Pennington, R. T. & Dick, C. W. Diversification of the Amazonian Flora and Its Relation to Key Geological and Environmental Events: A Molecular Perspective (Blackwell, 2010).

  • 29.

    Leite, R. N. & Rogers, D. S. Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives. Org. Divers. Evol. 13, 639–664 (2013).

    Article 

    Google Scholar 

  • 30.

    Haffer, J. R. Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers. Conserv. 6, 451–476 (1997).

    Article 

    Google Scholar 

  • 31.

    Garzón-Orduña, I. J., Benetti-Longhini, J. E. & Brower, A. V. Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. J. Biogeogr. 41, 1631–1638 (2014).

    Article 

    Google Scholar 

  • 32.

    Smith, B. T., Amei, A. & Klicka, J. Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proc. R. Soc. B 279, 3520–3526 (2012).

    Article 

    Google Scholar 

  • 33.

    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    Article 

    Google Scholar 

  • 34.

    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article 

    Google Scholar 

  • 35.

    McMahon, S. M. et al. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 26, 249–259 (2011).

    Article 

    Google Scholar 

  • 36.

    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article 

    Google Scholar 

  • 37.

    Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991 (2010).

    Article 

    Google Scholar 

  • 38.

    Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18, 357–364 (1995).

    Article 

    Google Scholar 

  • 39.

    Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels Research Paper INT-115 (USDA, 1972).

  • 40.

    Prentice, I. C., Harrison, S. P. & Bartlein, P. J. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 189, 988–998 (2011).

    Article 

    Google Scholar 

  • 41.

    Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340 (2013).

    Article 

    Google Scholar 

  • 42.

    Kelley, D. I., Harrison, S. P. & Prentice, I. C. Improved simulation of fire–vegetation interactions in the land surface processes and exchanges dynamic global vegetation model (LPX-Mv1). Geosci. Model Dev. 7, 2411–2433 (2014).

    Article 

    Google Scholar 

  • 43.

    Kelley, D. I. & Harrison, S. P. Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environ. Res. Lett. 9, 104015 (2014).

    Article 

    Google Scholar 

  • 44.

    Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Climate 3, 261–277 (2007).

    Google Scholar 

  • 45.

    Martin Calvo, M. & Prentice, I. C. Effects of fire and CO2 on biogeography and primary production in glacial and modern climates. New Phytol. 208, 987–994 (2015).

    Article 

    Google Scholar 

  • 46.

    Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate 3, 279–296 (2007).

    Google Scholar 

  • 47.

    Harris, I. P. D. J., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 48.

    Mayle, F. E., Burn, M. J., Power, M. & Urrego, D. H. in Past Climate Variability in South America and Surrounding Regions (eds Vimeux, F. et al.) 89–112 (Springer, 2009).

  • 49.

    Marchant, R. et al. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate 5, 725–767 (2009).

    Google Scholar 

  • 50.

    Stein, U. & Alpert, P. I. N. H. A. S. Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993).

    Article 

    Google Scholar 

  • 51.

    Argollo, J. & Mourguiart, P. Late Quaternary climate history of the Bolivian Altiplano. Quat. Int. 72, 37–51 (2000).

    Article 

    Google Scholar 

  • 52.

    Watts, W. A. & Bradbury, J. P. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17, 56–70 (1982).

    Article 

    Google Scholar 

  • 53.

    del Socorro Lozano-Garcia, M. & Ortega-Guerrero, B. Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 177–191 (1994).

    Article 

    Google Scholar 

  • 54.

    del Socorro Lozano-García, M. & Ortega-Guerrero, B. Late Quaternary environmental changes of the central part of the Basin of Mexico; correlation between Texcoco and Chalco basins. Rev. Palaeobot. Palynol. 99, 77–93 (1998).

    Article 

    Google Scholar 

  • 55.

    Leyden, B. W. Guatemalan forest synthesis after Pleistocene aridity. Proc. Natl Acad. Sci. USA 81, 4856–4859 (1984).

    Article 

    Google Scholar 

  • 56.

    Piperno, D. R., Bush, M. B. & Colinvaux, P. A. Paleoecological perspectives on human adaptation in central Panama. I. Pleistocene. Geoarchaeology 6, 201–226 (1991).

    Article 

    Google Scholar 

  • 57.

    Hooghiemstra, H., Cleef, A. M., Noldus, C. W. & Kappelle, M. Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area (Cordillera de Talamanca, Costa Rica). J. Quat. Sci. 7, 205–225 (1992).

    Article 

    Google Scholar 

  • 58.

    van der Hammen, T. & Hooghiemstra, H. Interglacial–glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Glob. Planet. Change 36, 181–199 (2003).

    Article 

    Google Scholar 

  • 59.

    Graf, K. Pollendiagramme aus den Anden: Eine Synthese zur Klimageschichte und Vegetationsentwicklung seit der letzten Eiszeit (Universität Zürich-Irchel-Geographisches Institut, 1992).

  • 60.

    Van Geel, B. & Van der Hammen, T. Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 14, 9–92 (1973).

    Article 

    Google Scholar 

  • 61.

    Behling, H. & Hooghiemstra, H. Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. J. Paleolimnol. 21, 461–476 (1999).

    Article 

    Google Scholar 

  • 62.

    Wille, M., Negret, J. A. & Hooghiemstra, H. Paleoenvironmental history of the Popayán area since 27 000 yr BP at Timbio, southern Colombia. Rev. Palaeobot. Palynol. 109, 45–63 (2000).

    Article 

    Google Scholar 

  • 63.

    Oliveira, P. E. D. A Palynological Record of Late Quaternary Vegetational and Climatic Change in Southeastern Brazil. PhD dissertation, The Ohio State Univ. (1992).

  • 64.

    Ledru, M. P. et al. Late-glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quat. Res. 55, 47–56 (2001).

    Article 

    Google Scholar 

  • 65.

    Behling, H., Arz, H. W., Pätzold, J. & Wefer, G. Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeogr. Palaeoclimatol. Palaeoecol. 179, 227–243 (2002).

    Article 

    Google Scholar 

  • 66.

    Van der Hammen, T. & González, E. Upper Pleistocene and Holocene climate and vegetation of the ‘Sabana de Bogota’ (Colombia, South America). Leidse Geologische Mededelingen 25, 261–315 (1960).

    Google Scholar 

  • 67.

    Guimarães, J. T. F. et al. Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene 27, 1055–1066 (2017).

    Article 

    Google Scholar 

  • 68.

    Van der Hammen, T. & Absy, M. L. Amazonia during the last glacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 247–261 (1994).

    Article 

    Google Scholar 

  • 69.

    Hansen, B. C. S. et al. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 79–108 (2003).

    Article 

    Google Scholar 

  • 70.

    Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).

    Article 

    Google Scholar 

  • 71.

    Urrego, D. H., Bush, M. B. & Silman, M. R. A long history of cloud and forest migration from Lake Consuelo, Peru. Quat. Res. 73, 364–373 (2010).

    Article 

    Google Scholar 

  • 72.

    Barberi, M., Salgado-Labouriau, M. L. & Suguio, K. Paleovegetation and paleoclimate of ‘Vereda de Águas Emendadas’, central Brazil. J. South Am. Earth Sci. 13, 241–254 (2000).

    Article 

    Google Scholar 

  • 73.

    Mourguiart, P., Argollo, J. & Wirrmann, D. In Climas Cuaternarios en America del Sur = Quaternary Climates of South America. 157–171 (ORSTOM, 1995).

  • 74.

    Mourguiart, P. & Ledru, M. P. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 195–198 (2003).

    Article 

    Google Scholar 

  • 75.

    Salgado-Labouriau, M. L., Barberi, M., Ferraz-Vicentini, K. R. & Parizzi, M. G. A dry climatic event during the late Quaternary of tropical Brazil. Rev. Palaeobot. Palynol. 99, 115–129 (1998).

    Article 

    Google Scholar 

  • 76.

    Ledru, M. P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).

    Article 

    Google Scholar 

  • 77.

    Chepstow-Lusty, A. et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quat. Res. 63, 90–98 (2005).

    Article 

    Google Scholar 

  • 78.

    Behling, H. & Lichte, M. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quat. Res. 48, 348–358 (1997).

    Article 

    Google Scholar 

  • 79.

    Behling, H. South and southeast Brazilian grasslands during late Quaternary times: a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 19–27 (2002).

    Article 

    Google Scholar 

  • 80.

    Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 407–422 (1997).

    Article 

    Google Scholar 

  • 81.

    Ledru, M. P., Mourguiart, P. & Riccomini, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 140–152 (2009).

    Article 

    Google Scholar 

  • 82.

    Pessenda, L. C. R. et al. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat. Res. 71, 437–452 (2009).

    Article 

    Google Scholar 

  • 83.

    Behling, H. & Negrelle, R. R. Tropical rain forest and climate dynamics of the Atlantic lowland, Southern Brazil, during the Late Quaternary. Quat. Res. 56, 383–389 (2001).

    Article 

    Google Scholar 

  • 84.

    Behling, H., Pillar, V. D., Orlóci, L. & Bauermann, S. G. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 277–297 (2004).

    Article 

    Google Scholar 

  • 85.

    Behling, H., Pillar, V. D. & Bauermann, S. G. Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev. Palaeobot. Palynol. 133, 235–248 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan