in

Effects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours

[adace-ad id="91168"]
  • 1.

    Gallai, N., Salles, J., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Article  Google Scholar 

  • 2.

    Carreck, N. L. & Ratnieks, F. L. W. The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?. J. Apicult. Res. 53, 607–614 (2014).

    Article  Google Scholar 

  • 3.

    Gross, M. New fears over bee declines. Curr. Biol. 21, 137–139 (2011).

    Article  CAS  Google Scholar 

  • 4.

    Lundin, O., Smith, H. G., Fries, I. & Bommarco, R. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLoS ONE 10, 2 (2015).

    Google Scholar 

  • 5.

    Rucker, R. R., Thurman, W. N. & Burgett, M. Honey bee pollination markets and the internalization of reciprocal benefits. Am. J. Agr. Econ. 94, 956–977 (2012).

    Article  Google Scholar 

  • 6.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA. 99, 16812–16816 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Koh, I., Lonsdorf, E. V., Artz, D. R., Pitts-Singer, T. L. & Ricketts, T. H. Ecology and economics of using native managed bees for almond pollination. J. Econ. Entomol. 111, 16–25 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep.-UK 7, 17610–17691 (2017).

    Article  CAS  Google Scholar 

  • 9.

    Claudianos, C. et al. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15, 615–636 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Abraham, J. et al. Commercially formulated glyphosate can kill non-target pollinator bees under laboratory conditions. Entomol. Exp. Appl. 166, 695–702 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Polyzou, A., Froment, M., Masson, P. & Belzunces, L. P. Absence of a protective effect of the oxime 2-PAM toward paraoxon-poisoned honey bees: Acetylcholinesterase reactivation not at fault. Toxicol. Appl. Pharm. 152, 184–192 (1998).

    CAS  Article  Google Scholar 

  • 12.

    Stanley, J., Sah, K., Jain, S. K., Bhatt, J. C. & Sushil, S. N. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119, 668–674 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Friol, P. S., Catae, A. F., Tavares, D. A., Malaspina, O. & Roat, T. C. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere 185, 56–66 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Fulton, C. A. et al. An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222, 489–493 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Report, C. R. I. Glyphosate industry overview in China, 2011–2020 (CRI, Shanghai, 2018).

    Google Scholar 

  • 17.

    Herbert, L. T., Vazquez, D. E., Arenas, A. & Farina, W. M. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J. Exp. Biol. 217, 3457–3464 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA. 115, 10305–10310 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Rahimian, Y. Effect of glyphosate on honey bee (Apis mellifera) performance. Arthropods. 7, 77–81 (2018).

    Google Scholar 

  • 20.

    Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Asses. 10, 463–470 (2014).

    ADS  CAS  Article  Google Scholar 

  • 21.

    FAO, China at a glance. http://www.fao.org/china/fao-in-china/china-at-a-glance/en/. (2019) Available.

  • 22.

    Hou, J. H. Path construction for the reform of the rural land property system. J. Huaiyin Inst. Technol. (2019).

  • 23.

    Zhang, C. et al. Health effect of agricultural pesticide use in China: Implications for the development of GM crops. Sci. Rep.-UK 6, 2 (2016).

    Article  CAS  Google Scholar 

  • 24.

    Michalková, V. & Pekár, S. How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol. Control. 51, 444–449 (2009).

    Article  CAS  Google Scholar 

  • 25.

    Janssens, L. & Stoks, R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193, 210–216 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    García-Espiñeira, M., Tejeda-Benitez, L. & Olivero-Verbel, J. Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. Ecotox. Environ. Safe. 156, 216–222 (2018).

    Article  CAS  Google Scholar 

  • 27.

    Tierney, K. B., Singh, C. R., Ross, P. S. & Kennedy, C. J. Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat. Toxicol. 81, 55–64 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Tierney, K. B., Ross, P. S., Jarrard, H. E., Delaney, K. R. & Kennedy, C. J. Changes in juvenile coho salmon electro-olfactogram during and after short-term exposure to current-use pesticides. Environ. Toxicol. Chem. 25, 2809–2817 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Cattani, D. et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology 387, 67–80 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Zaluski, R., Kadri, S. M., Alonso, D. P., Martins Ribolla, P. E. & de Oliveira, O. R. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environ. Toxicol. Chem. 34, 1062–1069 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    El Hassani, A. K. et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Con. Tox. 54, 653–661 (2008).

    Article  CAS  Google Scholar 

  • 32.

    Balbuena, M. S. et al. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 218, 2799–2805 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Company, Monsanto. Material safety data sheet for Roundup Original Herbicide. https://www.fumigationzone.com/files/53/Roundup+Original+-+EPA. (2006).

  • 34.

    Decourtye, A., Lacassie, E. & Pham-Delègue, M. Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest. Manag. Sci. 59, 269–278 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Haydak, M. H. Honey bee nutrition. Annu. Rev. Entomol. 15, 143–156 (1970).

    Article  Google Scholar 

  • 36.

    Winston, M. L. The biology of the honey bee. Q. Rev. Biol. 27, 239–243 (1987).

    Google Scholar 

  • 37.

    Wang, N. et al. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms. Chemosphere 59, 545–551 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Brausch, J. M., Beall, B. & Smith, P. N. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull. Environ. Contam. Toxicol. 78, 510–514 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Brausch, J. M., Brausch, J. M., Smith, P. N. & Smith, P. N. Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp Thamnocephalus platyurus. Arch. Environ. Con. Tox. 52, 217–221 (2007).

    CAS  Article  Google Scholar 

  • 40.

    Benachour, N. & Seralini, G. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem. Res. Toxicol. 22, 97–105 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Gasnier, C. et al. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines. J. Occup. Med. Toxicol. 5, 29 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Tsui, M. T. K. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Marc, J. et al. A glyphosate-based pesticide impinges on transcription. Toxicol. Appl. Pharm. 203, 1–8 (2005).

    CAS  Article  Google Scholar 

  • 44.

    Defarge, N. et al. Co-Formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Env. Res. Pub. He. 13, 264 (2016).

    Article  CAS  Google Scholar 

  • 45.

    NPIC., Techincal fact sheet for glyphosate. http://npic.orst.edu/factsheets/archive/glyphotech.html (2011).

  • 46.

    Mengoni, G. C. & Farina, W. M. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J. Exp. Biol. 221, 2 (2018).

    Google Scholar 

  • 47.

    Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).

    Article  Google Scholar 

  • 48.

    Goyret, J. & Farina, W. M. Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive. Sci. Nat.-Heidelberg. 92, 440–443 (2005).

    CAS  Article  Google Scholar 

  • 49.

    Faita, M. R., Oliveira, E. D. M., Alves, V. V., Orth, A. I. & Nodari, R. O. Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup. Chemosphere 211, 566–572 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Mesnage, R. et al. Glyphosate exposure in a farmer’s family. J. Environ. Prot. 03, 1001–1003 (2012).

    CAS  Article  Google Scholar 

  • 51.

    Samsel, A. & Seneff, S. Glyphosate’s suppression of cytochrome p450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy-Switz. 15, 1416–1463 (2013).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Ying, C. Brief analysis on the application technique of Roundup. Forest Investig. Des. 2, 39–40 (2007).

    MathSciNet  Google Scholar 

  • 53.

    Jing, X., Qi, J. & Yang, H. Pesticide residue level and dietary exposure risk assessment of Lycium barbarum in Golmud. Ecol. Environ. 28, 1007–1012 (2019).

    Google Scholar 

  • 54.

    Decourtye, A. et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Con. Tox. 48, 242–250 (2005).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    How to get more electric cars on the road

    Nutrients exported from upland stream water enlarge perennial biomass crops