in

Effects of global warming on Mediterranean coral forests

[adace-ad id="91168"]
  • 1.

    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the World’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Glynn, P. W. Widespread coral mortality and the 1982–83 El Nino warming events. Environ. Conserv. 11, 133–146 (1984).

    Article 

    Google Scholar 

  • 4.

    Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science 350, 769–771 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Eakin, C. M. et al. Global coral bleaching 2014–2017. Reef Curr. 31, 1 (2016).

    Google Scholar 

  • 6.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–26 (Springer, 2017).

    Chapter 

    Google Scholar 

  • 8.

    Chimienti, G. Vulnerable forests of the pink sea fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).

    Article 

    Google Scholar 

  • 9.

    Chimienti, G., De Padova, D., Mossa, M. & Mastrototaro, F. A mesophotic black coral forest in the Adriatic Sea. Sci. Rep. 10, 8504 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    FAO, Food and Agricultural Organization. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas (FAO, 2009).

    Google Scholar 

  • 11.

    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5(8), e11842 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C.-F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25(4), 250–260 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Marbà, N., Jordà, G., Agustí, S., Girard, C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 56 (2015).

    Article 

    Google Scholar 

  • 14.

    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Albano, P. G. et al. Native biodiversity collapse in the eastern Mediterranean. Proc. R. Soc. B 288, 20202469 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Harmelin, J. G. Biologie du corail rouge. Paramètres de populations, croissance et mortalité naturelle. Etat des connaissances en France. FAO Fish. Rep. 306, 99–103 (1984).

    Google Scholar 

  • 17.

    Bavestrello, G. & Boero, F. Necrosi e rigenerazione in Eunicella cavolinii (Anthozoa, Cnidaria) in Mar Ligure. Boll. Mus. Ist. Biol. Univ. Genova 52, 295–300 (1986).

    Google Scholar 

  • 18.

    Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).

    Article 

    Google Scholar 

  • 19.

    Linares, C. et al. Immediate and delayed effects of a mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 305, 127–137 (2005).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Coma, R. et al. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar. Ecol. Prog. Ser. 327, 51–60 (2006).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Huete-Stauffer, C. et al. Paramuricea clavata (Anthozoa, Octocorallia) loss in the Marine Protected Area of Tavolara (Sardinia, Italy) due to a mass mortality event. Mar. Ecol. 32, 107–116 (2011).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Rubio-Portillo, E. et al. Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected Area (southeast Spain). Mar. Environ. Res. 122, 135–142 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Turicchia, E., Abbiati, M., Sweet, M. & Ponti, M. Mass mortality hits gorgonian forests at Montecristo Island. Dis. Aquat. Org. 131, 79–85 (2018).

    Article 

    Google Scholar 

  • 26.

    von Schuckmann, K. et al. Copernicus Marine Service Ocean State Report, issue 3. J. Oper. Oceanogr. 12(1), S1–S123 (2019).

    Google Scholar 

  • 27.

    Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).

    Article 

    Google Scholar 

  • 28.

    Linares, C., Doak, D. F., Coma, R., Díaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Linares, C., Coma, R., Garrabou, J., Díaz, D. & Zabala, M. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J. Appl. Ecol. 45(2), 688–699 (2008).

    Article 

    Google Scholar 

  • 30.

    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1153–1166 (2018).

    Article 

    Google Scholar 

  • 31.

    Otero, M. M. et al. Overview of the conservation status of Mediterranean anthozoans. IUCN, x + 73 p (2017).

  • 32.

    Pastor, F., Valiente, J. A. & Khodayar, S. A. Warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12(17), 2687 (2020).

    ADS 
    Article 

    Google Scholar 

  • 33.

    DHI. Mike 3 Flow Model: Hydrodynamic Module-Scientific Documentation (DHI Software 2016, 2016).

    Google Scholar 

  • 34.

    Moore, S. K. et al. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 7(2), S4 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Piazza, G. et al. Prime osservazioni sul bloom mucillaginoso dell’estate 2018 sui fondali a coralligeno delle Isole Tremiti. Biol. Mar. Mediterr. 26(1), 320–321 (2019).

    Google Scholar 

  • 36.

    van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—Recent advances and perspectives. Microbiome 6, 64 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Bavestrello, G. et al. Mass mortality of Paramuricea clavata (Anthozoa: Cnidaria) on Portofino Promontory cliffs (Ligurian Sea). Mar. Life 4, 15–19 (1994).

    Google Scholar 

  • 38.

    Mistri, M. & Ceccherelli, V. U. Damage and partial mortality in the gorgonian Paramuricea clavata in the Strait of Messina (Tyrrhenian Sea). Mar. Life 5, 43–49 (1995).

    Google Scholar 

  • 39.

    Cerrano, C. & Bavestrello, G. Medium-term effects of dieoff of rocky benthos in the Ligurian Sea. What can we learn from gorgonians?. Chem. Ecol. 24, 73–82 (2008).

    Article 

    Google Scholar 

  • 40.

    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2021).

    Google Scholar 

  • 41.

    Cormaci, M., Furnari, G., Alongi, G., Catra, M. & Serio, D. The benthic algal flora on rocky substrata of the Tremiti Islands (Adriatic Sea). Plant Biosyst. 134(2), 133–152 (2000).

    Article 

    Google Scholar 

  • 42.

    Cebrian, E., Linares, C., Marschal, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invasions 14, 2647–2656 (2012).

    Article 

    Google Scholar 

  • 43.

    Verlaque, M., Ruitton, S., Mineur, F. & Boudouresque, C.-F. CIESM Atlas of Exotic Species of the Mediterranean: Macrophytes 1–362 (CIESM Publishers, 2015).

    Google Scholar 

  • 44.

    Ghabbourl, E. A. et al. Isolation of humic acid from the brown alga Pilayella littoralis. J. Appl. Phycol. 6, 459–468 (1994).

    Article 

    Google Scholar 

  • 45.

    Raberg, S., Jönsson, R. B., Björn, A., Granél, E. & Kautsky, L. Effects of Pilayella littoralis on Fucus vesiculosus recruitment: Implications for community composition. Mar. Ecol. Prog. Ser. 289, 131–139 (2005).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45(9–10), 2775–2802 (2015).

    Article 

    Google Scholar 

  • 47.

    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

    Article 

    Google Scholar 

  • 48.

    Bavestrello, G., Cerrano, C., Zanzi, D. & Cattaneo-Vietti, R. Damage by fishing activities in the gorgonian coral Paramuricea clavata in the Ligurian Sea. Aquat. Conserv. 7, 253–262 (1997).

    Article 

    Google Scholar 

  • 49.

    Linares, C. & Doak, D. F. Forecasting the combined effects of disparate disturbances on the persistence of long-lived gorgonians: A case study of Paramuricea clavata. Mar. Ecol. Prog. Ser. 402, 59–68 (2010).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Chimienti, G. et al. An explorative assessment of the importance of Mediterranean Coralligenous habitat to local economy: The case of recreational diving. J. Environ. Account. Manag. 5(4), 310–320 (2017).

    Google Scholar 

  • 51.

    Di Camillo, C. G., Ponti, M., Bavestrello, G., Krzelj, M. & Cerrano, C. Building a baseline for habitat-forming corals by a multi-source approach, including web ecological knowledge. Biodivers. Conserv. 27, 1257–1276 (2018).

    Article 

    Google Scholar 

  • 52.

    Ingrosso, G. et al. Mediterranean bioconstructions along the Italian coast. Adv. Mar. Biol. 79, 61–136 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Chimienti, G., Angeletti, L., Rizzo, L., Tursi, A. & Mastrototaro, F. ROV vs trawling approaches in the study of benthic communities: The case of Pennatula rubra (Cnidaria: Pennatulacea). J. Mar. Biol. Assoc. U. K. 98(8), 1859–1869 (2018).

    Article 

    Google Scholar 

  • 54.

    Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep-Sea Res. Pt. I 165, 103364 (2020).

    Article 

    Google Scholar 

  • 55.

    Mastrototaro, F. et al. Mesophotic rocks dominated by Diazona violacea: A Mediterranean codified habitat. Eur. Zool. J. 87(1), 688–695 (2020).

    Article 

    Google Scholar 

  • 56.

    Walton, C. C., Pichel, W. G., Sapper, J. F. & May, D. A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 103(C12), 27999–28012 (1998).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).

    Google Scholar 

  • 59.

    Simoncelli, S. et al. Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Copernicus Monitoring Environment Marine Service (CMEMS), 2019). https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004.

  • 60.

    Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Change Service Climate Data Store (CDS), 2017). https://cds.climate.copernicus.eu/cdsapp#!/home.

  • 61.

    Xie, P. & Arkin, P. A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558 (1997).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Rodi, W. Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. Ocean 92(C5), 5305–5328 (1987).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Galperin, B. & Orszag, S. A. Large Eddy Simulation of Complex Engineering and Geophysical Flows 3–36 (Cambridge University Press, 1993).

    Google Scholar 

  • 64.

    De Padova, D., De Serio, F., Mossa, M. & Armenio, E. Investigation of the current circulation offshore Taranto by using field measurements and numerical model. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference 1–5 (IEEE, 2017).

  • 65.

    Armenio, E., De Padova, D., De Serio, F. & Mossa, M. Monitoring system for the sea: Analysis of meteo, wave and current data. In Workshop on Metrology for the Sea, MetroSea 2017: Learning to Measure Sea Health Parameters 143–148 (IMEKO TC19, 2017).

  • 66.

    Armenio, E., Ben Meftah, M., De Padova, D., De Serio, F. & Mossa, M. Monitoring systems and numerical models to study coastal sites. Sensors 19(7), 1552 (2019).

    ADS 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Chu, P. C. & Fan, C. Global ocean synoptic thermocline gradient, isothermal-layer depth, and other upper ocean parameters. Sci. Data 6, 119 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 System) (Copernicus Monitoring Environment Marine Service (CMEMS), 2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5.


  • Source: Ecology - nature.com

    How marsh grass protects shorelines

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes