in

Environmental optima for an ecosystem engineer: a multidisciplinary trait-based approach

[adace-ad id="91168"]
  • 1.

    Rivadeneira, M. M. et al. Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: Linking abundance and life-history variation. J. Biogeogr. 37, 486–498 (2010).

    Google Scholar 

  • 2.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Google Scholar 

  • 3.

    Lewis, J. R. Latitudinal trends in reproduction, recruitment and population characteristics of some rocky littoral molluscs and cirripedes. Hydrobiologia 142, 1–13 (1986).

    Google Scholar 

  • 4.

    Bernardo, J. The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236 (1996).

    Google Scholar 

  • 5.

    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Marshall, D. J., Pettersen, A. K. & Cameron, H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Funct. Ecol. 32, 1436–1446 (2018).

    Google Scholar 

  • 7.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed 

    Google Scholar 

  • 8.

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Google Scholar 

  • 9.

    Sides, C. B. et al. Revisiting Darwin’s hypothesis: Does greater intraspecific variability increase species’ ecological breadth?. Am. J. Bot. 101, 56–62 (2014).

    PubMed 

    Google Scholar 

  • 10.

    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

    ADS 

    Google Scholar 

  • 11.

    Violle, C. et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    PubMed 

    Google Scholar 

  • 12.

    Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659 (2017).

    Google Scholar 

  • 13.

    Stearns, S. C. The Evolution of Life Histories. xii, 249p. No. 575 S81 (Oxford, Oxford University, 1992).

  • 14.

    Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).

    Google Scholar 

  • 15.

    Levitan, D. R. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62, 1305–1316 (2008).

    PubMed 

    Google Scholar 

  • 16.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • 17.

    Pineda, M. C. et al. Tough adults, frail babies: An analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7, e46672 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • 19.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 

    Google Scholar 

  • 20.

    Foo, S. A. & Byrne, M. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg. Mar. Environ. Res. 128, 12–24 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Dahlhoff, E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. Annu. Rev. Physiol. 66, 183–207 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Soudant, P. et al. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 123, 209–222 (1999).

    Google Scholar 

  • 23.

    Lester, S. E., Gaines, S. D. & Kinlan, B. P. Reproduction on the edge: Large-scale patterns of individual performance in a marine invertebrate. Ecology 88, 2229–2239 (2007).

    PubMed 

    Google Scholar 

  • 24.

    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).

    Google Scholar 

  • 25.

    Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).

    Google Scholar 

  • 26.

    Dubois, S., Retière, C. & Olivier, F. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: Effects of human disturbances. J. Mar. Biol. Assoc. UK 82, 817–826 (2002).

    Google Scholar 

  • 27.

    Jones, A. G., Dubois, S. F., Desroy, N. & Fournier, J. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuar. Coast. Shelf Sci. 200, 1–18 (2018).

    ADS 

    Google Scholar 

  • 28.

    Bonifazi, A. et al. Macrofaunal biodiversity associated with different developmental phases of a threatened Mediterranean Sabellaria alveolata (Linnaeus, 1767) reef. Mar. Environ. Res. 145, 97–111 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Holt, T. J., Biogenic Reefs. An Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs. UK Marine SACs Project (1998).

  • 30.

    Crisp, D. The effects of the severe winter of 1962–1963 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).

    Google Scholar 

  • 31.

    Firth, L. B. et al. Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecol. Evol. 5, 3210–3222 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Firth, L. B. et al. Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation. Divers. Distrib. 27, 668–683 (2021).

    Google Scholar 

  • 33.

    Wethey, D. S. et al. Response of intertidal populations to climate: Effects of extreme events versus long term change. J. Exp. Mar. Biol. Ecol. 400, 132–144 (2011).

    Google Scholar 

  • 34.

    Sagarin, R. D. & Gaines, S. D. Geographical abundance distributions of coastal invertebrates: Using one-dimensional ranges to test biogeographic hypotheses. J. Biogeogr. 29, 985–997 (2002).

    Google Scholar 

  • 35.

    Rahman, M. A., Henderson, S., Miller-Ezzy, P., Li, X. X. & Qin, J. G. Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish Shellfish Immunol. 86, 868–874 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Osada, M., Nishikawa, M. & Nomura, T. Involvement of prostaglandins in the spawning of the scallop, Patinopecten yessoensis. Comp. Biochem. Physiol. C 94, 595–601 (1989).

    Google Scholar 

  • 37.

    Stanley, D. W. & Howard, R. W. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular, organismal and ecological actions. Am. Zool. 38, 369–381 (1998).

    CAS 

    Google Scholar 

  • 38.

    Pernet, F., Tremblay, R., Comeau, L. & Guderley, H. Temperature adaptation in two bivalve species from different thermal habitats: Energetics and remodelling of membrane lipids. J. Exp. Biol. 210, 2999–3014 (2007).

    PubMed 

    Google Scholar 

  • 39.

    Muir, A. P., Nunes, F. L. D., Dubois, S. F. & Pernet, F. Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature. Sci. Rep. 6, 35669 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Hulbert, A. & Else, P. L. Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199, 257–274 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Brokordt, K. B., Himmelman, J. H., Nusetti, O. A. & Guderley, H. E. Reproductive investment reduces recuperation from exhaustive escape activity in the tropical scallop Euvola zizac. Mar. Biol. 137, 857–865 (2000).

    CAS 

    Google Scholar 

  • 42.

    Levitan, D. R. & Roitberg, B. D. Optimal egg size in marine invertebrates: Theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am. Nat. 156, 175–192 (2000).

    PubMed 

    Google Scholar 

  • 43.

    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).

    PubMed 

    Google Scholar 

  • 44.

    Marshall, D. J. & Burgess, S. C. Deconstructing environmental predictability: Seasonality, environmental colour and the biogeography of marine life histories. Ecol. Lett. 18, 174–181 (2015).

    PubMed 

    Google Scholar 

  • 45.

    Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. & Platt, T. Phytoplankton phenology in the global ocean. Ecol. Indic. 14, 152–163 (2012).

    Google Scholar 

  • 46.

    Henson, S., Cole, H., Beaulieu, C. & Yool, A. The impact of global warming on seasonality of ocean primary production. Biogeosciences 10, 4357–4369 (2013).

    ADS 

    Google Scholar 

  • 47.

    Morim, J. et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 9, 711–718 (2019).

    ADS 

    Google Scholar 

  • 48.

    Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    McCarthy, D., Young, C. & Emson, R. Influence of wave-induced disturbance on seasonal spawning patterns in the sabellariid polychaete Phragmatopoma lapidosa. Mar. Ecol. Prog. Ser. 256, 123–133 (2003).

    ADS 

    Google Scholar 

  • 50.

    Aviz, D., Pinto, A. J. A., Ferreira, M. A. P., Rocha, R. M. & Rosa Filho, J. S. Reproductive biology of Sabellaria wilsoni (Sabellariidae: Polychaeta), an important ecosystem engineer on the Amazon coast. J. Mar. Biol. Assoc. UK https://doi.org/10.1017/S0025315416001776 (2016).

    Article 

    Google Scholar 

  • 51.

    Bowman, R. S. & Lewis, J. Annual fluctuations in the recruitment of Patella vulgata L. J. Mar. Biol. Assoc. U. K. 57, 793–815 (1977).

    Google Scholar 

  • 52.

    Sagarin, R. D. & Somero, G. N. Complex patterns of expression of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytilus californianus and snail Nucella ostrina. J. Biogeogr. 33, 622–630 (2006).

    Google Scholar 

  • 53.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    ADS 

    Google Scholar 

  • 54.

    Firth, L. B., Knights, A. M. & Bell, S. S. Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 400, 250–256 (2011).

    Google Scholar 

  • 55.

    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).

    Google Scholar 

  • 56.

    Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).

    ADS 

    Google Scholar 

  • 57.

    Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. in Advances in Marine Biology, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (Elsevier, 2007).

  • 58.

    Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits: Intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).

    Google Scholar 

  • 59.

    Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: The trade-off between egg size and number. Proc. R. Soc. B Biol. Sci. 276, 2963–2969 (2009).

    Google Scholar 

  • 60.

    Osovitz, C. J. & Hofmann, G. E. Marine macrophysiology: Studying physiological variation across large spatial scales in marine systems. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147, 821–827 (2007).

    PubMed 

    Google Scholar 

  • 61.

    Clarke, A. Reproduction in the cold: Thorson revisited. Invertebr. Reprod. Dev. 22, 175–183 (1992).

    Google Scholar 

  • 62.

    Hawkins, S. J. et al. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Mar. Pollut. Bull. 124, 573–586 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Dahlhoff, E. P., Stillman, J. H. & Menge, B. A. Physiological community ecology: Variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients. Integr. Comp. Biol. 42, 862–871 (2002).

    PubMed 

    Google Scholar 

  • 64.

    Nunes, F. L. D., Rigal, F., Dubois, S. F. & Viard, F. Looking for diversity in all the right places? Genetic diversity is highest in peripheral populations of the reef-building polychaete Sabellaria alveolata. Mar. Biol. 168, 63 (2021).

    Google Scholar 

  • 65.

    Bush, L. E. Stability and Variability of the Ecosystem Engineer Sabellaria alveolata on Differing Temporal and Spatial Scales (Bangor University, 2016).

    Google Scholar 

  • 66.

    Lourenço, C. R., Nicastro, K. R., McQuaid, C. D., Krug, L. A. & Zardi, G. I. Strong upwelling conditions drive differences in species abundance and community composition along the Atlantic coasts of Morocco and Western Sahara. Mar. Biodivers. 50, 15 (2020).

    Google Scholar 

  • 67.

    Ritchie, H. & Marshall, D. J. Fertilisation is not a new beginning: Sperm environment affects offspring developmental success. J. Exp. Biol. 216, 3104–3109 (2013).

    PubMed 

    Google Scholar 

  • 68.

    Dubois, S., Comtet, T., Retière, C. & Thiébaut, E. Distribution and retention of Sabellaria alveolata larvae (Polychaeta: Sabellariidae) in the Bay of Mont-Saint-Michel, France. Mar. Ecol. Prog. Ser. 346, 243–254 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 69.

    Costello, D. P., Henley, C., & Marine Biological Laboratory (Woods Hole, Mass.). Methods for obtaining and handling marine eggs and embryos [by] Donald P. Costello and Catherine Henley. ([s.n.], 1971). https://doi.org/10.5962/bhl.title.1020.

  • 70.

    Gruet, Y. Aspects morphologiques et dynamiques de constructions de l’Annélide polychete Sabellaria alveolata (Linne). Rev. Trav. Inst. Pêch. Marit. 36, 131–161 (1972).

    Google Scholar 

  • 71.

    Saulquin, B., Gohin, F. & Garrello, R. Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a data from 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).

    ADS 

    Google Scholar 

  • 72.

    Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 7, 705–732 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 73.

    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, 12930 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Progress Oceanogr. 198, 102684 (2021).

    Google Scholar 

  • 75.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 

    Google Scholar 

  • 76.

    Schlegel, R. W., Oliver, E. C., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).

    Google Scholar 

  • 77.

    Egbert, G. D., Erofeeva, S. Y. & Ray, R. D. Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf. Cont. Shelf Res. 30, 668–679 (2010).

    ADS 

    Google Scholar 

  • 78.

    Burrows, M., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).

    ADS 

    Google Scholar 

  • 79.

    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).

    Google Scholar 

  • 80.

    Seers, B. fetchR: Calculate Wind Fetch. R Package Version 2-1 (2017).

  • 81.

    Guillaume, A. S., Monro, K. & Marshall, D. J. Transgenerational plasticity and environmental stress: Do paternal effects act as a conduit or a buffer?. Funct. Ecol. 30, 1175–1184 (2016).

    Google Scholar 

  • 82.

    Curd, A. et al. Connecting organic to mineral: How the physiological state of an ecosystem-engineer is linked to its habitat structure. Ecol. Indic. 98, 49–60 (2019).

    CAS 

    Google Scholar 

  • 83.

    Gruet, Y. & Lassus, P. Contribution a l’etude de la biologie reproductive d’une population naturelle de l’Annelide Polychete, Sabellaria alveolata (Linnaeus). Ann. Inst. Oceanogr. Monaco 59, 127–140 (1983).

    Google Scholar 

  • 84.

    Hazel, J. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29, 167–227 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).

    Google Scholar 

  • 86.

    Abele, D. & Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 138, 405–415 (2004).

    PubMed 

    Google Scholar 

  • 87.

    Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509. http://www.jbc.org/content/226/1/497 (1957).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Sieracki, C., Sieracki, M. & Yentsch, C. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168, 285–296 (1998).

    ADS 

    Google Scholar 

  • 89.

    Pasteels, J. J. Etude au microscope électronique de la réaction corticale. II. La réaction corticale de l’oeuf vierge de Sabellaria alveolata. J. Embryol. Exp. Morphol. 13, 327–339 (1965).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Doledec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species-environment relationships. Freshw. Biol. 31, 277–294 (1994).

    Google Scholar 

  • 91.

    Robert, P. & Escoufier, Y. A unifying tool for linear multivariate statistical methods: The RV-coefficient. J. R. Stat. Soc. Ser. C Appl. Stat. 25, 257–265 (1976).

    MathSciNet 

    Google Scholar 

  • 92.

    Legendre, P. & Legendre, L. Ecological resemblance. in Developments in Environmental Modelling Chapter 7, Vol. 24, 265–335 (Elsevier, 2012).

  • 93.

    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Google Scholar 

  • 94.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    PubMed 

    Google Scholar 

  • 95.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • 96.

    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales?. Ecol. Lett. 13, 838–848 (2010).

    PubMed 

    Google Scholar 

  • 97.

    Rao, C. R. The use and interpretation of principal component analysis in applied research. Sankhyā Indian J. Stat. Ser. A (1961-2002) 26, 329–358 (1964).

  • 98.

    R Core Team: A language and environment for statistical computing. Available from: https://www.R-project.org/ (2018).

  • 99.

    Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Package Version 2, 1–295 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature

    Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods