in

Family graveyards form underappreciated local plant diversity hotspots in China's agricultural landscapes

[adace-ad id="91168"]
  • 1.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917 (2014).

    Article  Google Scholar 

  • 2.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. https://doi.org/10.1038/nature15374 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539. https://doi.org/10.1016/j.tree.2015.06.013 (2015).

    Article  PubMed  Google Scholar 

  • 4.

    Salek, M. et al. Bringing diversity back to agriculture: smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol. Ind. 90, 65–73. https://doi.org/10.1016/j.ecolind.2018.03.001 (2018).

    Article  Google Scholar 

  • 5.

    Bianchi, F. J., Booij, C. J. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Biol. Sci. 273, 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574. https://doi.org/10.1126/science.1111772 (2005).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555. https://doi.org/10.1126/science.1106049 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W., Veldtman, R. & Clough, Y. Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J. Appl. Ecol. 49, 1373–1383. https://doi.org/10.1111/j.1365-2664.2012.02217.x (2012).

    Article  Google Scholar 

  • 10.

    Lindborg, R., Plue, J., Andersson, K. & Cousins, S. A. O. Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol. Conserv. 169, 206–213. https://doi.org/10.1016/j.biocon.2013.11.015 (2014).

    Article  Google Scholar 

  • 11.

    Knappova, J., Hemrova, L. & Muenzbergova, Z. Colonization of central European abandoned fields by dry grassland species depends on the species richness of the source habitats: a new approach for measuring habitat isolation. Landsc. Ecol. 27, 97–108. https://doi.org/10.1007/s10980-011-9680-5 (2012).

    Article  Google Scholar 

  • 12.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213. https://doi.org/10.1038/nature13139 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Hunter, M. L. et al. Conserving small natural features with large ecological roles: a synthetic overview. Biol. Conserv. 211, 88–95. https://doi.org/10.1016/j.biocon.2016.12.020 (2017).

    Article  Google Scholar 

  • 14.

    Batáry, P. et al. Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric. Ecosyst. Environ. 136, 35–39. https://doi.org/10.1016/j.agee.2009.11.004 (2010).

    Article  Google Scholar 

  • 15.

    McGlaughlin, M. E. et al. Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae). Bot. J. Linn. Soc. 174, 289–304. https://doi.org/10.1111/boj.12122 (2014).

    Article  Google Scholar 

  • 16.

    Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat Fragmentation in the Temperate Zone (Sinauer Associates Inc, Sunderland, Massachusetts, 1986).

    Google Scholar 

  • 17.

    Baur, B. & Erhardt, A. Habitat fragmentation and habitat alterations: principal threats to most animal and plant species. GAIA Ecol. Perspect. Sci. Soc. 4, 221–226 (1995).

    Google Scholar 

  • 18.

    Mac Arthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. Monographs in Population Biology. (Princeton University Press, Princeton, N. J., 1967).

  • 19.

    Lindgren, J. P. & Cousins, S. A. O. Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landsc. Ecol. 32, 1895–1906. https://doi.org/10.1007/s10980-017-0544-5 (2017).

    Article  Google Scholar 

  • 20.

    Li, L. Distribution pattern of plant diversity and vegetation construction in field margins and homegardens Doctor thesis, China Agriculture University, (2014).

  • 21.

    Li, P. et al. Possibilities and requirements for introducing agri-environment measures in land consolidation projects in China, evidence from ecosystem services and farmers’ attitudes. Sci. Total Environ. 650, 3145–3155. https://doi.org/10.1016/j.scitotenv.2018.10.051 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 22.

    Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039. https://doi.org/10.1111/j.1461-0248.2009.01356.x (2009).

    Article  PubMed  Google Scholar 

  • 23.

    Haddad, N. M., Tilman, D., Haarstad, J., Ritchie, M. & Knops, J. M. H. Contrasting effects of plant diversity and composition on insect communities: a field experiment. Am. Nat. 158, 17–35 (2001).

    CAS  Article  Google Scholar 

  • 24.

    Hertzog, L. R., Meyer, S. T., Weisser, W. W. & Ebeling, A. Experimental manipulation of grassland plant diversity induces complex shifts in aboveground arthropod diversity. PLoS ONE 11, e0148768. https://doi.org/10.1371/journal.pone.0148768 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Southwood, T. R. E., Brown, V. K. & Reader, P. M. The relationships of plant and insect diversities in succession. Biol. J. Lin. Soc. 12, 327–348. https://doi.org/10.1111/j.1095-8312.1979.tb00063.x (1979).

    Article  Google Scholar 

  • 26.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600. https://doi.org/10.1126/science.1133306 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U. S. A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340. https://doi.org/10.1126/science.aaa1788 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632. https://doi.org/10.1038/nature04742 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).

    Article  PubMed  Google Scholar 

  • 32.

    Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B Biol. Sci. 275, 2283–2291. https://doi.org/10.1098/rspb.2008.0405 (2008).

    Article  Google Scholar 

  • 33.

    Kleijn, D. et al. Ecological effectiveness of agri-environment schemes in different agricultural landscapes in the Netherlands. Conserv. Biol. 18, 775–786. https://doi.org/10.1111/j.1523-1739.2004.00550.x (2004).

    Article  Google Scholar 

  • 34.

    Steffan-Dewenter, I. & Tscharntke, T. Succession of bee communities on fallows. Ecography 24, 83–93 (2001).

    Article  Google Scholar 

  • 35.

    Steffan-Dewenter, I., Klein, A.-M., Gaebele, V., Alfert, T. & Tscharntke, T. Bee Diversity and Plant-Pollinator Interactions in Fragmented Landscapes (UNIV Chicago Press, 2006).

  • 36.

    Bruun, H. H. Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography 23, 641–650. https://doi.org/10.1034/j.1600-0587.2000.230601.x (2000).

    Article  Google Scholar 

  • 37.

    Öster, M., Cousins, S. A. O. & Eriksson, O. Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J. Veg. Sci. 18, 859–868 (2007).

    Article  Google Scholar 

  • 38.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).

    Article  Google Scholar 

  • 39.

    Kiviniemi, K. & Eriksson, O. Size-related deterioration of semi-natural grassland fragments in Sweden. Divers. Distrib. 8, 21–29 (2002).

    Article  Google Scholar 

  • 40.

    Cousins, S. A. O. & Lindborg, R. Remnant grassland habitats as source communities for plant diversification in agricultural landscapes. Biol. Conserv. 141, 233–240. https://doi.org/10.1016/j.biocon.2007.09.016 (2008).

    Article  Google Scholar 

  • 41.

    Knapp, M. & Rezac, M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10, e0123052. https://doi.org/10.1371/journal.pone.0123052 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Oksuz, D. P. et al. Increasing biodiversity in wood-pastures by protecting small shrubby patches. For. Ecol. Manag. 464, 118041. https://doi.org/10.1016/j.foreco.2020.118041 (2020).

    Article  Google Scholar 

  • 43.

    Herzon, I. & Mikk, M. Farmers’ perceptions of biodiversity and their willingness to enhance it through agri-environment schemes: a comparative study from Estonia and Finland. J. Nat. Conserv. 15, 10–25 (2007).

    Article  Google Scholar 

  • 44.

    Wu, P. et al. Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biol. Conserv. 237, 456–462. https://doi.org/10.1016/j.biocon.2019.07.029 (2019).

    Article  Google Scholar 

  • 45.

    Liu, Y., Axmacher, J. C., Wang, C., Li, L. & Yu, Z. Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of Northern China—implications for biodiversity conservation. Insect Conserv. Divers. 3, 34–43. https://doi.org/10.1111/j.1752-4598.2009.00069.x (2010).

    Article  Google Scholar 

  • 46.

    Hodge, I. & Reader, M. The introduction of Entry Level Stewardship in England: extension or dilution in agri-environment policy?. Land Use Policy 27, 270–282. https://doi.org/10.1016/j.landusepol.2009.03.005 (2010).

    Article  Google Scholar 

  • 47.

    Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005 (2017).

    Article  Google Scholar 

  • 48.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).

    Article  PubMed  Google Scholar 

  • 49.

    ESRI. ArcGIS 10.2 for Desktop. (2014).

  • 50.

    Han, Y. Study on Spatial and Temporal Patterns of Biodiversity in Intensive Agricultural Landscape of Quzhou County Master thesis (China Agricultural University, 2015).

  • 51.

    Hurlbert, A. H. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 7, 714–720. https://doi.org/10.1111/j.1461-0248.2004.00630.x (2004).

    Article  Google Scholar 

  • 52.

    Zou, Y. et al. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China. Ecol. Evol. 5, 531–542. https://doi.org/10.1002/ece3.1367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Jari, O. et al. In Package‘vegan’, Community Ecology Package 221 (2019).

  • 54.

    Faith, D. P., Minchin, P. R. & Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68. https://doi.org/10.1007/bf00038687 (1987).

    Article  Google Scholar 

  • 55.

    Ripley, B. et al. In Support Functions and Datasets for Venables and Ripley’s MASS (2019).

  • 56.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (2009).

  • 57.

    Roger, B. et al. In Spatial Dependence: Weighting Schemes, Statistics and Models 131–133 (2018).

  • 58.

    W. N. Venables, D. M. Smith & the_R_Core_Team. In Notes on R: A Programming Environment for Data Analysis and Graphics (Version 4.0.2, 2020).

  • 59.

    Lin, S. Honey Source Plant (China Forestry Publishing House, 1989).

  • 60.

    Xu, W. Chinese Honey Source Plant (Heilongjiang Science and Technology Press, 1983).

  • 61.

    Ke, X. Honey Powder Botanical (China Agriculture Press, 1995).

  • 62.

    Ma, D. & Liang, S. Chinese Honey Powder Source Plants and Their Utilization (1993).


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road