in

Fish associations with shallow water subsea pipelines compared to surrounding reef and soft sediment habitats

[adace-ad id="91168"]
  • 1.

    Parente, V., Ferreira, D., Moutinho dos Santos, E. & Luczynski, E. Offshore decommissioning issues: deductibility and transferability. Energy Policy 34, 1992–2001 (2006).

    Article 

    Google Scholar 

  • 2.

    Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: will the deep sea benefit from artificial habitat?. Front. Ecol. Environ. 9, 455–461 (2011).

    Article 

    Google Scholar 

  • 3.

    Fowler, A. M., Macreadie, P. I., Jones, D. O. B. & Booth, D. J. A multi-criteria decision approach to decommissioning of offshore oil and gas infrastructure. Ocean Coast. Manag. 87, 20–29 (2014).

    Article 

    Google Scholar 

  • 4.

    Hamzah, B. A. International rules on decommissioning of offshore installations: some observations. Mar. Policy 27, 339–348 (2003).

    Article 

    Google Scholar 

  • 5.

    Chandler, J., White, D., Techera, E. J., Gourvenec, S. & Draper, S. Engineering and legal considerations for decommissioning of offshore oil and gas infrastructure in Australia. Ocean Eng. 131, 338–347 (2017).

    Article 

    Google Scholar 

  • 6.

    Claisse, J. T. et al. Oil platforms off California are among the most productive marine fish habitats globally. Proc. Natl. Acad. Sci. U. S. A. 111, 15462–15467 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Fowler, A. M. & Booth, D. J. Evidence of sustained populations of a small reef fish on artificial structures. Does depth affect production on artificial reefs?. J. Fish Biol. 80, 613–629 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Gallaway, B. J., Szedlmayer, S. T. & Gazey, W. J. A life history review for red snapper in the Gulf of Mexico with an evaluation of the importance of offshore petroleum platforms and other artificial reefs. Rev. Fish. Sci. 17, 48–67 (2009).

    Article 

    Google Scholar 

  • 9.

    Love, M. S. et al. Potential use of offshore marine structures in rebuilding an overfished rockfish species, bocaccio (Sebastes paucispinis). Fish. Bull. 104, 383–390 (2006).

    Google Scholar 

  • 10.

    Friedlander, A. M., Ballesteros, E., Fay, M. & Sala, E. Marine communities on oil platforms in Gabon, West Africa: high biodiversity oases in a low biodiversity environment. PLoS ONE 9, e103709 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    McLean, D. L., Taylor, M. D., Giraldo Ospina, A. & Partridge, J. C. An assessment of fish and marine growth associated with an oil and gas platform jacket using an augmented remotely operated vehicle. Cont. Shelf Res. 179, 66–84 (2019).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Schramm, K. D. et al. A comparison of stereo-BRUVs and stereo-ROV techniques for sampling shallow water fish communities on and off pipelines. Mar. Environ. Res. 162, 105198 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Schroeder, D. M. & Love, M. S. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight. Ocean Coast. Manag. 47, 21–48 (2004).

    Article 

    Google Scholar 

  • 14.

    Bull, A. S. & Love, M. S. Worldwide oil and gas platform decommissioning: a review of practices and reefing options. Ocean Coast. Manag. 168, 274–306 (2019).

    Article 

    Google Scholar 

  • 15.

    Department of Industry, Science, Energy and Resources. Offshore Petroleum Decommissioning Guideline 4 (Department of Industry, Science, Energy and Resources, 2018).

    Google Scholar 

  • 16.

    Bell, N. & Smith, J. Coral growing on North Sea oil rigs. Nature 402, 601–601 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    APPEA. Scientific Literature Review. Environmental Impacts of Decommissioning Options (APPEA, 2017).

    Google Scholar 

  • 18.

    Stolk, P., Markwell, K. & Jenkins, J. M. Artificial reefs as recreational scuba diving resources: a critical review of research. J. Sustain. Tour. 15, 331–350 (2007).

    Article 

    Google Scholar 

  • 19.

    Scarborough-Bull, A., Love, M. S. & Schroeder, D. M. Artificial reefs as fishery conservation tools: contrasting the roles of offshore structures between the Gulf of Mexico and the Southern California Bight. Am. Fish. Soc. Symp. 49, 899–915 (2008).

    Google Scholar 

  • 20.

    Moore, C. H. et al. Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs. Sci. Rep. 6, 32029 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Cripps, S. J. & Aabel, J. P. Environmental and socio-economic impact assessment of Ekoreef, a multiple platform rigs-to-reefs development. ICES J. Mar. Sci. 59, 300–308 (2002).

    Article 

    Google Scholar 

  • 22.

    Matthews, K. R. Species similarity and movement of fishes on natural and artificial reefs in Monterey bay, California. Bull. Mar. Sci. 37, 252–270 (1985).

    ADS 

    Google Scholar 

  • 23.

    Grossman, G. D., Jones, G. P. & Seaman, W. J. Jr. Do artificial reefs increase regional fish production? A review of existing data. Fisheries 22, 17–23 (1997).

    Article 

    Google Scholar 

  • 24.

    Bohnsack, J. A. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?. Bull. Mar. Sci. 44, 631–645 (1989).

    Google Scholar 

  • 25.

    Page, H. M., Dugan, J. E., Culver, C. S. & Hoesterey, J. C. Exotic invertebrate species on offshore oil platforms. Mar. Ecol. Prog. Ser. 325, 101–107 (2006).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Pajuelo, J. G. et al. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors. J. Mar. Syst. 163, 23–30 (2016).

    Article 

    Google Scholar 

  • 27.

    van Elden, S., Meeuwig, J. J., Hobbs, R. J. & Hemmi, J. M. Offshore oil and gas platforms as novel ecosystems: a global perspective. Front. Mar. Sci. 6, 548 (2019).

    Article 

    Google Scholar 

  • 28.

    Rouse, S., Hayes, P. & Wilding, T. A. Commercial fisheries losses arising from interactions with offshore pipelines and other oil and gas infrastructure and activities. ICES J. Mar. Sci. 77, 1148–1156 (2020).

    Article 

    Google Scholar 

  • 29.

    Bond, T. et al. Fish associated with a subsea pipeline and adjacent seafloor of the North West Shelf of Western Australia. Mar. Environ. Res. 141, 53–65 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Bond, T., Partridge, J. C., Taylor, M. D., Cooper, T. F. & McLean, D. L. The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. PLoS ONE 13, e0207703 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Bond, T. et al. Diel shifts and habitat associations of fish assemblages on a subsea pipeline. Fish. Res. 206, 220–234 (2018).

    Article 

    Google Scholar 

  • 32.

    McLean, D. L. et al. Using industry ROV videos to assess fish associations with subsea pipelines. Cont. Shelf Res. 141, 76–97 (2017).

    ADS 
    Article 

    Google Scholar 

  • 33.

    McLean, D. L., Vaughan, B. I., Malseed, B. E. & Taylor, M. D. Fish-habitat associations on a subsea pipeline within an Australian Marine Park. Mar. Environ. Res. 153, 104813 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Love, M. S. & York, A. A comparison of the fish assemblages associated with an oil/gas pipeline and adjacent seafloor in the Santa Barbara Channel, Southern California Bight. Bull. Mar. Sci. 77, 101–118 (2005).

    ADS 

    Google Scholar 

  • 35.

    Arnould, J. P. Y. et al. Use of anthropogenic sea floor structures by Australian fur seals: potential positive ecological impacts of marine industrial development?. PLoS ONE 10, e0130581 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    DMP. Maps and Geospatial Information (Government of Western Australia, Department of Mine, Industry Regulation and Safety, 2020).

    Google Scholar 

  • 37.

    McLean, D. L. et al. Distribution, abundance, diversity and habitat associations of fishes across a bioregion experiencing rapid coastal development. Estuar. Coast. Shelf Sci. 178, 36–47 (2016).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Travers, M. J., Clarke, K. R., Newman, S. J., Hall, N. G. & Potter, I. C. To what extents are species richness and abundance of reef fishes along a tropical coast related to latitude and other factors?. Cont. Shelf Res. 167, 99–110 (2018).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Travers, M. J., Newman, S. J. & Potter, I. C. Influence of latitude, water depth, day v. night and wet v. dry periods on the species composition of reef fish communities in tropical Western Australia. J. Fish Biol. 69, 987–1017 (2006).

    Article 

    Google Scholar 

  • 40.

    Travers, M. J., Potter, I. C., Clarke, K. R. & Newman, S. J. Relationships between latitude and environmental conditions and the species richness, abundance and composition of tropical fish assemblages over soft substrata. Mar. Ecol. Prog. Ser. 446, 221–241 (2012).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Chevron. Wheatstone Project: Dredging and Dredge Spoil Placement Environmental Monitoring and Management Plan 234 (Chevron Australia Pty Ltd., 2016).

    Google Scholar 

  • 42.

    Gaughan, D. J. et al. (eds) Status Reports of the Fisheries and Aquatic Resources of Western Australia 2017/18: The State of the Fisheries (Department of Primary Industries and Regional Development, 2019).

    Google Scholar 

  • 43.

    Ryan, K. L. et al. Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2017/18. Fisheries Research Report No. 297, Department of Primary Industries and Regional Development (2019).

  • 44.

    Harvey, E. S., Goetze, J., McLaren, B., Langlois, T. & Shortis, M. R. Influence of range, angle of view, image resolution and image compression on underwater stereo-video measurements: high-definition and broadcast-resolution video cameras compared. Mar. Technol. Soc. J. 44, 75–85 (2010).

    Article 

    Google Scholar 

  • 45.

    Goetze, J. S. et al. A field and video analysis guide for diver operated stereo-video. Methods Ecol. Evol. 10, 1083–1090 (2019).

    Article 

    Google Scholar 

  • 46.

    Myers, E. M. V., Harvey, E. S., Saunders, B. J. & Travers, M. J. Fine-scale patterns in the day, night and crepuscular composition of a temperate reef fish assemblage. Mar. Ecol. 37, 668–678 (2016).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Sward, D., Monk, J. & Barrett, N. A systematic review of remotely operated vehicle surveys for visually assessing fish assemblages. Front. Mar. Sci. 6, 134 (2019).

    Article 

    Google Scholar 

  • 48.

    Gregoire, T. G. & Valentine, H. T. Sampling Strategies for Natural Resources and the Environment (CRC Press, 2007).

    Google Scholar 

  • 49.

    Harvey, E. S. & Shortis, M. R. Calibration stability of an underwater stereo-video system: implications for measurement accuracy and precision. Mar. Technol. Soc. J. 32, 3–17 (1998).

    Google Scholar 

  • 50.

    Shortis, M. R. & Harvey, E. S. Design and calibration of an underwater stereo-video system for the monitoring of marine fauna populations. Int. Arch. Photogramm. Remote Sens. 32, 792–799 (1998).

    Google Scholar 

  • 51.

    Shortis, M., Harvey, E. & Abdo, D. A review of underwater stereo-image measurement for marine biology and ecology applications. In Oceanography and Marine Biology Vol. 47 (eds Gibson, R. et al.) 257–292 (Taylor & Francis, 2009).

    Google Scholar 

  • 52.

    Boutros, N., Shortis, M. R. & Harvey, E. S. A comparison of calibration methods and system configurations of underwater stereo-video systems for applications in marine ecology. Limnol. Oceanogr. Methods 13, 224–236 (2015).

    Article 

    Google Scholar 

  • 53.

    Taylor, R. B. & Willis, T. J. Relationships amongst length, weight and growth of north-eastern New Zealand reef fishes. Mar. Freshw. Res. 49, 255–260 (1998).

    Article 

    Google Scholar 

  • 54.

    Froese, R. & Pauly, D. FishBase. www.fishbase.org, Accessed Sept 2019 (2019).

  • 55.

    Bach, L. L., Saunders, B. J., Newman, S. J., Holmes, T. H. & Harvey, E. S. Cross and long-shore variations in reef fish assemblage structure and implications for biodiversity management. Estuar. Coast. Shelf Sci. 218, 246–257 (2019).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Anderson, M., Gorley, R. & Clarke, K. P. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods 1st edn. (PRIMER-E, 2008).

    Google Scholar 

  • 57.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 58.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245–254 (2007).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Watson, D. L., Harvey, E. S., Anderson, M. J. & Kendrick, G. A. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148, 415–425 (2005).

    Article 

    Google Scholar 

  • 61.

    Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155–168 (2010).

    Article 

    Google Scholar 

  • 62.

    Simon, T., Pinheiro, H. T. & Joyeux, J.-C. Target fishes on artificial reefs: evidences of impacts over nearby natural environments. Sci. Total Environ. 409, 4579–4584 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Simon, T., Joyeux, J.-C. & Pinheiro, H. T. Fish assemblages on shipwrecks and natural rocky reefs strongly differ in trophic structure. Mar. Environ. Res. 90, 55–65 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166 (2006).

    Article 

    Google Scholar 

  • 65.

    Bohnsack, J. A. & Sutherland, D. L. Artificial reef research: a review with recommendations for future priorities. Bull. Mar. Sci. 37, 11–39 (1985).

    Google Scholar 

  • 66.

    Harvey, E. S., Butler, J. J., McLean, D. L. & Shand, J. Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia. J. Exp. Mar. Biol. Ecol. 426–427, 78–86 (2012).

    Article 

    Google Scholar 

  • 67.

    Newman, S. J. & Williams, D. M. Mesh size selection and diel variability in catch of fish traps on the central Great Barrier Reef, Australia: a preliminary investigation. Fish. Res. 23, 237–253 (1995).

    Article 

    Google Scholar 

  • 68.

    Nagelkerken, I., Dorenbosch, M., Verberk, W. & van der Cocheret de la Morinière Velde, E. G. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar. Ecol. Prog. Ser. 194, 55–64 (2000).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Currey, L. M., Heupel, M. R., Simpfendorfer, C. A. & Williams, A. J. Assessing fine-scale diel movement patterns of an exploited coral reef fish. Anim. Biotelem. 3, 41 (2015).

    Article 

    Google Scholar 

  • 70.

    Newman, S. J. & Williams, D. M. Spatial and temporal variation in assemblages of Lutjanidae, Lethrinidae and associated fish species among mid-continental shelf reefs in the central Great Barrier Reef. Mar. Freshw. Res. 52, 843–851 (2001).

    Article 

    Google Scholar 

  • 71.

    Layman, C. A., Allgeier, J. E., Yeager, L. A. & Stoner, E. W. Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology 94, 530–536 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Marnane, M. J. & Bellwood, D. R. Diet and nocturnal foraging in cardinalfishes (Apogonidae) at One Tree Reef, Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 231, 261–268 (2002).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Wen, C. K. C., Pratchett, M. S., Almany, G. R. & Jones, G. P. Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs 32, 389–398 (2013).

    ADS 
    Article 

    Google Scholar 

  • 75.

    Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).

    Article 

    Google Scholar 

  • 76.

    Pradella, N., Fowler, A. M., Booth, D. J. & Macreadie, P. I. Fish assemblages associated with oil industry structures on the continental shelf of north-western Australia. J. Fish Biol. 84, 247–255 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    McLean, D. L. et al. Fish and habitats on wellhead infrastructure on the north west shelf of Western Australia. Cont. Shelf Res. 164, 10–27 (2018).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Frisch, A. J. Are juvenile coral-trouts (Plectropomus) mimics of poisonous pufferfishes (Canthigaster) on coral reefs?. Mar. Ecol. 27, 247–252 (2006).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Wen, C. K. C., Pratchett, M. S., Almany, G. R. & Jones, G. P. Role of prey availability in microhabitat preferences of juvenile coral trout (Plectropomus: Serranidae). J. Exp. Mar. Biol. Ecol. 443, 39–45 (2013).

    Article 

    Google Scholar 

  • 80.

    Kerry, J. T. & Bellwood, D. R. The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31, 415–424 (2012).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Lindfield, S. J., Harvey, E. S., McIlwain, J. L. & Halford, A. R. Silent fish surveys: bubble-free diving highlights inaccuracies associated with SCUBA-based surveys in heavily fished areas. Methods Ecol. Evol. 5, 1061–1069 (2014).

    Article 

    Google Scholar 

  • 82.

    Kulbicki, M. How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J. Exp. Mar. Biol. Ecol. 222, 11–30 (1998).

    Article 

    Google Scholar 

  • 83.

    Gray, A. E. et al. Comparison of reef fish survey data gathered by open and closed circuit SCUBA divers reveals differences in areas with higher fishing pressure. PLoS ONE 11, e0167724 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Guidetti, P., Vierucci, E. & Bussotti, S. Differences in escape response of fish in protected and fished Mediterranean rocky reefs. J. Mar. Biol. Assoc. U. K. 88, 625–627 (2008).

    Article 

    Google Scholar 

  • 85.

    Laidig, T. E., Krigsman, L. M. & Yoklavich, M. M. Reactions of fishes to two underwater survey tools, a manned submersible and a remotely operated vehicle. Fish. Bull. 111, 54–67 (2013).

    Google Scholar 

  • 86.

    Sutton, S. G. & Bushnell, S. L. Socio-economic aspects of artificial reefs: considerations for the Great Barrier Reef Marine Park. Ocean Coast. Manag. 50, 829–846 (2007).

    Article 

    Google Scholar 

  • 87.

    Florisson, J. H. et al. King Reef: an Australian first in repurposing oil and gas infrastructure to benefit regional communities. APPEA J. 60, 435–439 (2020).

    Article 

    Google Scholar 

  • 88.

    Rouse, S., Kafas, A., Catarino, R. & Peter, H. Commercial fisheries interactions with oil and gas pipelines in the North Sea: considerations for decommissioning. ICES J. Mar. Sci. 75, 279–286 (2018).

    Article 

    Google Scholar 

  • 89.

    Gratwicke, B. & Speight, M. R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005).

    Article 

    Google Scholar 

  • 90.

    Charbonnel, E., Serre, C., Ruitton, S., Harmelin, J.-G. & Jensen, A. Effects of increased habitat complexity on fish assemblages associated with large artificial reef units (French Mediterranean coast). ICES J. Mar. Sci. 59, 208–213 (2002).

    Article 

    Google Scholar 

  • 91.

    Perkol-Finkel, S., Shashar, N. & Benayahu, Y. Can artificial reefs mimic natural reef communities? The roles of structural features and age. Mar. Environ. Res. 61, 121–135 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Burt, J., Bartholomew, A., Usseglio, P., Bauman, A. & Sale, P. F. Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates?. Coral Reefs 28, 663–675 (2009).

    ADS 
    Article 

    Google Scholar 

  • 93.

    Folpp, H., Lowry, M., Gregson, M. & Suthers, I. M. Fish assemblages on estuarine artificial reefs: natural rocky-reef mimics or discrete assemblages?. PLoS ONE 8, e63505 (2014).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    How coal’s decline impacts county and school funding

    At MIT Energy Conference, experts zero in on legacy energy systems