in

Forest fires and climate-induced tree range shifts in the western US

[adace-ad id="91168"]
  • 1.

    von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. of Chicago Press, 1807).

  • 2.

    Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).

  • 3.

    Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. 105, 11823–11826 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).

    Google Scholar 

  • 6.

    Thomas, C. D. Climate, climate change and range boundaries: climate and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Google Scholar 

  • 7.

    Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  • 8.

    Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments: climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).

    Google Scholar 

  • 10.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    ADS 

    Google Scholar 

  • 11.

    Im, S. T., Kharuk, V. I., Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS; Siberian Federal University & Lee, V. G. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 17, 176–187 (2020).

    Google Scholar 

  • 12.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Murphy, H. T., VanDerWal, J. & Lovett-Doust, J. Signatures of range expansion and erosion in eastern North American trees: signatures of range expansion and erosion. Ecol. Lett. 13, 1233–1244 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    PubMed 

    Google Scholar 

  • 16.

    Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111, 287–297 (2013).

    Google Scholar 

  • 17.

    Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).

    PubMed 

    Google Scholar 

  • 18.

    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed 

    Google Scholar 

  • 19.

    Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17 (2017).

    Google Scholar 

  • 20.

    Wilkinson, D. M. Mycorrhizal fungi and quaternary plant migrations. Glob. Ecol. Biogeogr. Lett. 7, 137 (1998).

    Google Scholar 

  • 21.

    Wilkinson, D. M. Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J. Biogeogr. 24, 61–65 (1997).

    Google Scholar 

  • 22.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1984).

  • 23.

    Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).

    PubMed 

    Google Scholar 

  • 24.

    Svenning, J.-C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M. & Thompson, J. R. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Glob. Chang. Biol. 24, e335–e351 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 26.

    Moorcroft, P. R., Pacala, S. W. & Lewis, M. A. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 241, 601–616 (2006).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 27.

    Moran, E. V. & Ormond, R. A. Simulating the interacting effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees. PLoS ONE 10, e0142369 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Stralberg, D. et al. Wildfire-mediated vegetation change in boreal forests of Alberta. Can. Ecosphere 9, e02156 (2018).

    Google Scholar 

  • 29.

    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Chang. Biol. 23, 3921–3933 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 31.

    Caplat, P., Anand, M. & Bauch, C. Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. Theor. Ecol. 1, 209–220 (2008).

    Google Scholar 

  • 32.

    Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D. & Franklin, J. Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc. Ecol. 30, 1039–1053 (2015).

    Google Scholar 

  • 33.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Google Scholar 

  • 34.

    Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).

    Google Scholar 

  • 35.

    Harvey, B. J., Donato, D. C. & Turner, M. G. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches: Drought and post-fire tree seedlings. Glob. Ecol. Biogeogr. 25, 655–669 (2016).

    Google Scholar 

  • 36.

    Coop, J. D. et al. Wildfire-driven forest conversion in western north American landscapes. BioScience 70, 659–673 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. 116, 11319–11328 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).

    PubMed 

    Google Scholar 

  • 39.

    Hanes, T. L. Succession after fire in the Chaparral of southern California. Ecol. Monogr. 41, 27–52 (1971).

    Google Scholar 

  • 40.

    McKenzie, D. A. & Tinker, D. B. Fire-induced shifts in overstory tree species composition and associated understory plant composition in Glacier National Park, Montana. Plant Ecol. 213, 207–224 (2012).

    Google Scholar 

  • 41.

    Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).

    Google Scholar 

  • 42.

    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).

    ADS 

    Google Scholar 

  • 43.

    Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. 116, 6193–6198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    ADS 

    Google Scholar 

  • 45.

    Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Google Scholar 

  • 46.

    Dobrowski, S. Z. et al. Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US. Glob. Ecol. Biogeogr. 24, 917–927 (2015).

    Google Scholar 

  • 47.

    Anderson, T. W. An Introduction to Multivariate Statistical Analysis (Wiley-Interscience, 2003).

  • 48.

    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116 (2009).

    Google Scholar 

  • 49.

    Tollefson, J. Quercus chrysolepis. https://www.fs.fed.us/database/feis/plants/tree/quechr/all.html (2008).

  • 50.

    Fryer, J. Quercus kelloggii. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2007).

  • 51.

    Meyer, R. Chrysolepis chrysophylla. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2012).

  • 52.

    Michelle, A. Pinus contorta var. latifolia. https://www.fs.fed.us/database/feis/plants/tree/pinconl/all.html (2003).

  • 53.

    Cope, A. Pinus contorta var. murrayana. https://www.fs.fed.us/database/feis/plants/tree/pinconm/all.html (1993).

  • 54.

    Cope, A. Pinus contorta var. contorta. https://www.fs.fed.us/database/feis/plants/tree/pinconc/all.html (1993).

  • 55.

    Rodman, K. C. et al. A trait‐based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. https://doi.org/10.1111/1365-2745.13480 (2020).

  • 56.

    Davis, K. T., Higuera, P. E. & Sala, A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct. Ecol. 32, 1729–1745 (2018).

    Google Scholar 

  • 57.

    Gutzler, D. S. & Robbins, T. O. Climate variability and projected change in the western United States: regional downscaling and drought statistics. Clim. Dyn. 37, 835–849 (2011).

    Google Scholar 

  • 58.

    Leung, L. R. et al. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Chang. 62, 75–113 (2004).

    Google Scholar 

  • 59.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).

    Google Scholar 

  • 60.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).

    ADS 

    Google Scholar 

  • 61.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 63.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 64.

    RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, PBC, 2020).

  • 65.

    U.S. Forest Service. Forest Inventory and Analysis National Core Field Guide. https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2017/core_ver7-2_10_2017_final.pdf (2017).

  • 66.

    U.S. EPA. Level I Ecoregions of North America Shapefile. (2010).

  • 67.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for north America. PLoS ONE 11, e0156720 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Google Scholar 

  • 69.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  • 70.

    Hill, A. avephill/wildfire-plant_RS: Forest fires and climate-induced tree range shifts in the western US. https://doi.org/10.5281/ZENODO.5555390 (2021).


  • Source: Ecology - nature.com

    Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    Effect of biostimulants on the growth, yield and nutritional value of Capsicum annuum grown in an unheated plastic tunnel