in

Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco-morphologically divergent cichlid fishes endemic to Lake Tanganyika

[adace-ad id="91168"]
  • 1.

    Van der Laan, R. & Fricke, R. Eschmeyer’s Catalog of Fishes Family Group Names. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names (2020).

  • 2.

    Greenwood, P. H. African cichlids and evolutionary theories. In Evolution of Fish Species Flock (eds Echelle, A. A. & Kornfield, I.) 141–154 (University of Maine at Orono Press, Orono, 1984).

    Google Scholar 

  • 3.

    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Tiercelin, J.-J. & Mondeguer, A. The geology of the Tanganyika trough. In Lake Tanganyika and its Life (ed. Coulter, G. W.) 7–48 (Oxford University Press, Oxford, 1991).

    Google Scholar 

  • 6.

    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid Fish Faunas. Syst. Biol. 51, 113–135 (2002).

    PubMed  Article  Google Scholar 

  • 8.

    Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Koblmüller, S. et al. Age and spread of the haplochromine cichlid fishes in Africa. Mol. Phylogenet. Evol. 49, 153–169 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 10.

    Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Sturmbauer, C., Levinton, J. S. & Christy, J. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc. Natl. Acad. Sci. U. S. A. 93, 10855–10857 (1996).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Joyce, D. A. et al. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435, 90–95 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    Katongo, C., Koblmüller, S., Duftner, N., Mumba, L. & Sturmbauer, C. Evolutionary history and biogeographic affinities of the serranochromine cichlids in Zambian rivers. Mol. Phylogenet. Evol. 45, 326–338 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Sturmbauer, C., Koblmüller, S., Sefc, K. M. & Duftner, N. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542, 335–366 (2005).

    Article  Google Scholar 

  • 15.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi Cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).

    PubMed  Article  Google Scholar 

  • 17.

    Kullander, S. O. & Roberts, T. R. Out of Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River. Ichthyol. Explor. Freshw. 22, 355–376 (2011).

    Google Scholar 

  • 18.

    West-Eberhard, M.-J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).

    Google Scholar 

  • 19.

    Rossiter, A. The Cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. In Advances in Ecological Research (eds Begon, M. & Fitter, A. H.) 187–252 (Academic Press Ltd., London, 1995).

    Google Scholar 

  • 20.

    Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Liem, K. F. Evolutionary strategies and morphological innovations: Cichlid Pharyngeal Jaws. Syst Biol. 22, 425–441 (1973).

    Google Scholar 

  • 23.

    Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Maan, M. E. & Sefc, K. M. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences. Semin. Cell. Dev. Biol. 24, 516–528 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Malinsky, M. Andinoacara coeruleopunctatus Genome Browser Gateway. http://em-x1.gurdon.cam.ac.uk/cgi-bin/hgGateway?hgsid=6400&clade=vertebrate&org=A.+coeruleopunctatus&db=0 (2015).

  • 27.

    Conte, M. A. et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience 8, giz030 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Thibaud-Nissen, F. et al. P8008 the NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).

    Article  Google Scholar 

  • 29.

    Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Conte,M.A., Gammerdinger,W.J., Bartie,K.L., Penman,D.J. & Kocher,T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. bioRxiv https://doi.org/10.1101/099564 (2017).

  • 31.

    Vij, S. et al. Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12, e1005954 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2015).

  • 33.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Dohmen, E., Kremer, L. P. M., Bornberg-Bauer, E. & Kemena, C. DOGMA: Domain-based transcriptome and proteome quality assessment. Bioinformatics 32, 2577–2581 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Hunt, M. et al. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 14, R47 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Asalone, K. C. et al. Regional sequence expansion or collapse in heterozygous genome assemblies. PLoS Comput. Biol. 16, e1008104 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Conte, M. A. & Kocher, T. D. An improved genome reference for the African cichlid Metriaclima zebra. BMC Genomics 16, 724 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    McKenna, A. et al. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Rausch, T. et al. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Liu, Y. et al. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 21, 61 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Supernat, A., Vidarsson, O. V., Steen, V. M. & Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 8, 17851 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Navon, D. et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl. Acad. Sci. U. S. A. 117, 19321–19327 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nat. Rev. Neurosci. 7, 103–114 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Dworkin, S., Boglev, Y., Owens, H. & Goldie, S. J. The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J. Dev. Biol. 4, 24 (2016).

    PubMed Central  Article  PubMed  Google Scholar 

  • 55.

    Szabo-Rogers, H. L., Smithers, L. E., Yakob, W. & Liu, K. J. New directions in craniofacial morphogenesis. Dev. Biol. 341, 84–94 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Zhou, H., Kim, S., Ishii, S. & Boyer, T. G. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol. Cell Biol. 26, 8667–8682 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Clouthier, D. E., Garcia, E. & Schilling, T. F. Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. Am. J. Med. Genet. A 152A, 2962–2973 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Fischer, C. et al. Complete mitochondrial DNA sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS ONE 8, e67048 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

  • 61.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  • 66.

    Buffalo, V. Scythe. https://github.com/vsbuffalo/scythe (2014).

  • 67.

    CLCbio Assembly Cell. https://www.quiagenbioinformatics.com/products/clc-assembly-cell (2015).

  • 68.

    Bushnell, B., Rood, J. & Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Leggett, R. M., Clavijo, B. J., Clissold, L., Clark, M. D. & Caccamo, M. NextClip: An analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 30, 566–568 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 73.

    Broad Institute Picard Tools. https://github.com/broadinstitute/picard (2016).

  • 74.

    Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Le, H. S., Schulz, M. H., McCauley, B. M., Hinman, V. F. & Bar-Joseph, Z. Probabilistic error correction for RNA sequencing. Nucleic Acids Res. 41, e109 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Liu, Y., Schröder, J. & Schmidt, B. Musket: A multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308–315 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Liu,B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012 (2013).

  • 80.

    Denisov, G. et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24, 1035–1040 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 81.

    Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Pryszcz, L. P. & Gabaldón, T. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 83.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Frith, M. C., Wan, R. & Horton, P. Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res. 38, e100 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 87.

    English, A. C. et al. Mind the Gap: Upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).

    CAS  Article  Google Scholar 

  • 89.

    Wences, A. H. & Schatz, M. C. Metassembler: Merging and optimizing de novo genome assemblies. Genome Biol. 16, 207 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 90.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Kosugi, S., Hirakawa, H. & Tabata, S. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741 (2015).

    CAS  PubMed  Google Scholar 

  • 92.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 94.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  • 95.

    Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 230 (2015).

    Article  Google Scholar 

  • 96.

    Simpson, J. T. et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Ponstingl, H. & Ning, Z. SMALT. https://www.sanger.ac.uk/science/tools/smalt-0 (2018).

  • 98.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Stanke, M. & Morgenstern, B. Augustus: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 102.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  Article  Google Scholar 

  • 103.

    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 104.

    Wu, T. D. & Watanabe, C. K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 105.

    Kent, W. J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 106.

    Oracle Inc. MySQL. https://www.mysql.com (2016).

  • 107.

    Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  • 109.

    Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Article  Google Scholar 

  • 111.

    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 112.

    Palmer, J. M. Funannotate: a fungal genome annotation and comparative genomics pipeline. https://github.com/nextgenusfs/funannotate (2016).

  • 113.

    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 114.

    Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 115.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 117.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 118.

    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 119.

    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 120.

    Wucher,V. et al. FEELnc: A tool for Long non-coding RNAs annotation and its application to the dog transcriptome. bioRxiv https://doi.org/10.1101/064436 (2016).

  • 121.

    Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 122.

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends. Genet. 16, 276–277 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 123.

    Jurka, J. W. RepBase. https://www.girinst.org/server/RepBase (2016).

  • 124.

    Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org (2014).

  • 125.

    Price, A. L., Jones, N. C. & Pevzner, P. A. D. novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 126.

    Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 128.

    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 129.

    Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 130.

    Yin, Y. et al. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 131.

    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 132.

    Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).

    CAS  PubMed  Google Scholar 

  • 133.

    Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 134.

    Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 135.

    Li, Y., Xiang, J. & Duan, C. Insulin-like growth factor-binding protein-3 plays an important role in regulating pharyngeal skeleton and inner ear formation and differentiation. J. Biol. Chem. 280, 3613–3620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 136.

    Lin, J. M. et al. Actions of fibroblast growth factor-8 in bone cells in vitro. Am. J. Physiol. Endocrinol. Metab. 297, E142–E150 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 137.

    Nichols, J. T., Pan, L., Moens, C. B. & Kimmel, C. B. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 140, 2765–2775 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 138.

    Bush, J. O., Lan, Y. & Jiang, R. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene. Proc. Natl. Acad. Sci. U. S. A. 101, 7022–7027 (2004).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 139.

    Vieira, A. R. et al. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet. 1, e64 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 140.

    Papaioannou, V. E. The T-box gene family: Emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 141.

    Kang, Y. J., Stevenson, A. K., Yau, P. M. & Kollmar, R. Sparc protein is required for normal growth of zebrafish otoliths. J. Assoc. Res. Otolaryngol. 9, 436–451 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 142.

    Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 143.

    Zarelli, V. E. & Dawid, I. B. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc. Natl. Acad. Sci. U. S. A. 110, 2870–2875 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 144.

    Zhang, Z., Huynh, T. & Baldini, A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133, 3587–3595 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 145.

    Yutzey, K. E. DiGeorge syndrome, Tbx1, and retinoic acid signaling come full circle. Circ. Res. 106, 630–632 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 146.

    Ghassibe-Sabbagh, M. et al. FAF1, a gene that is disrupted in cleft palate and has conserved function in Zebrafish. Am. J. Hum. Genet. 88, 150–161 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 147.

    Wilm, T. P. & Solnica-Krezel, L. Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 132, 393–404 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 148.

    Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525–530 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 149.

    Plaster, N., Sonntag, C., Schilling, T. F. & Hammerschmidt, M. REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Dev. Dyn. 236, 1891–1904 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 150.

    Jordan, V. K. et al. Genotype–phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 151.

    Diepeveen, E. T., Kim, F. D. & Salzburger, W. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection. BMC Evol. Biol. 13, 153 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 152.

    Stock, D. W. et al. The evolution of the vertebrate Dlx gene family. Proc. Natl. Acad. Sci. USA 93, 10858–10863 (1996).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 153.

    Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 7, e002 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 154.

    Linville, A., Radtke, K., Waxman, J. S., Yelon, D. & Schilling, T. F. Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Dev. Biol. 325, 60–70 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 155.

    Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J. & Eberhart, J. K. Examination of a palatogenic gene program in Zebrafish. Dev. Dyn. 240, 2204–2220 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 156.

    Iwata, J. et al. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J. Biol. Chem. 285, 4975–4982 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 157.

    Prochazkova, M., Prochazka, J., Marangoni, P. & Klein, O. D. Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development. Front Genet. 9, 542 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 158.

    Du, J. et al. Different expression patterns of Gli1-3 in mouse embryonic maxillofacial development. Acta Histochem. 114, 620–625 (2012).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Keeping an eye on the fusion future