in

Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish

[adace-ad id="91168"]
  • 1.

    Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R. & Werner, F. E. Population connectivity in marine systems an overview. Oceanography 20, 14–21 (2007).

    Article 

    Google Scholar 

  • 2.

    Vendrami, D. L. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. UK 9, 1–13 (2019).

    CAS 

    Google Scholar 

  • 3.

    Holsinger, K. & Weir, B. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Smedbol, R. K., McPherson, A., Hansen, M. M. & Kenchington, E. Myths and moderation in marine metapopulations?. Fish Fish. 3, 20–35 (2002).

    Article 

    Google Scholar 

  • 5.

    Makinen, H. S., Cano, J. M. & Merila, J. Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol. Ecol. 17, 3565–3582 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Thompson, P. L. & Fronhofer, E. A. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proc. Natl. Acad. Sci. 116, 21061–21067 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    van Tienderen, P. H., de Haan, A. A., van der Linden, C. G. & Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol. 17, 577–582 (2002).

    Article 

    Google Scholar 

  • 10.

    Cadrin, S. X., Kerr, L. A. & Mariani, S. Interdisciplinary evaluation of spatial population structure for definition of fishery management units. In Stock Identification Methods: Applications in Fishery Science (eds Cadrin, S. X. et al.) (Academic Press, 2014).

    Chapter 

    Google Scholar 

  • 11.

    Hoffmann, A. et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim. Change Res. 2, 1–24 (2015).

    Article 

    Google Scholar 

  • 12.

    Narum, S. R., Buerkle, C. A., Davey, J. W., Miller, M. R. & Hohenlohe, P. A. Genotyping by sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Davey, J. W. & Blaxter, M. L. RADSeq: Next-generation population genetics. Brief Funct. Genom. 9, 416–423 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Valencia, L. M., Martins, A., Ortiz, E. M. & Di Fiore, A. A. RAD-sequencing approach to genome-wide marker discovery, genotyping, and phylogenetic inference in a diverse radiation of primates. PLoS ONE 13, e0201254 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Zalapa, J. E. et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 99, 193–208 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Hohenlohe, P. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. Plos Genet. 6, e1000862 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. 107, 16196–16200 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C. & Brumfield, R. T. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 62, 397–406 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Genner, M. J. & Turner, G. F. The mbuna cichlids of Lake Malawi: A model for rapid speciation and adaptive radiation. Fish Fish. 6, 1–34 (2005).

    Article 

    Google Scholar 

  • 22.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    FAO. Fishery and Aquaculture Statistics Yearbook 2014 (Food and Agriculture Organization, 2016).

    Google Scholar 

  • 24.

    CMFRI. Marine Fish Landings in India 2019. Technical Report (ICAR-Central Marine Fisheries Research Institute, 2020).

    Google Scholar 

  • 25.

    Longhurst, A. R. & Wooster, W. S. Abundance of oil sardine (Sardinella longiceps) and upwelling in the southwest coast of India. Can. J. Fish Aquat. Sci. 47, 2407–2419 (1990).

    Article 

    Google Scholar 

  • 26.

    Krishnakumar, P. K. et al. How environmental parameters influenced fluctuations in oil sardine and mackerel fishery during 1926–2005 along the southwest coast of India. Mar. Fish. Inf. Service T & E Ser. No. 198, 1–5 (2008).

    Google Scholar 

  • 27.

    Xu, C. & Boyce, M. S. Oil sardine (Sardinella longiceps) off the Malabar coast: Density dependence and environmental effects. Fish. Oceanogr. 18, 359–370 (2009).

    Article 

    Google Scholar 

  • 28.

    Checkley, D. M. Jr., Asch, R. G. & Rykaczewski, R. R. Climate, anchovy and sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Kripa, V. et al. Overfishing and climate drives changes in biology and recruitment of the Indian oil sardine Sardinella longiceps in southeastern Arabian Sea. Front. Mar. Sci. 5, 443 (2018).

    Article 

    Google Scholar 

  • 30.

    Kuthalingam, M. D. K. Observations on the life history and feeding habits of the Indian sardine, Sardinella longiceps (Cuv. & Val.). Treubia 25, 207–213 (1960).

    Google Scholar 

  • 31.

    Sebastian, W., Sukumaran, S., Zacharia, P. U. & Gopalakrishnan, A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conserv. Genet. 18, 951–964 (2017).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Sebastian, W. et al. Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci. Rep. UK 10, 1–14 (2020).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Sukumaran, S., Sebastian, W. & Gopalakrishnan, A. Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast. Gene 576, 372–378 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Sukumaran, S. et al. Morphological divergence in Indian oil sardine, Sardinella longiceps Valenciennes, 1847 Does it imply adaptive variation?. J. Appl. Ichthyol. 32, 706–711 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity?. Ecology 93, 1378–1387 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Pardoe, H. Spatial and temporal variation in life-history traits of Atlantic cod (Gadus morhua) in Icelandic waters, Reykjavik University of Iceland. PhD thesis https://doi.org/10.13140/RG.2.2.27158.70727 (2009).

    Article 

    Google Scholar 

  • 37.

    Devaraj, M. et al. Status, prospects and management of small pelagic fisheries in India. In Small Pelagic Resources and Their Fisheries in the Asia-Pacific Region: Proceedings of the APFIC Workshop (eds Devaraj, M. & Martosubroto, P.) 91–198 (Asia-Pacific Fishery Commission, Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, 1997).

    Google Scholar 

  • 38.

    Mohamed, K. S. et al. Minimum Legal Size (MLS) of capture to avoid growth overfishing of commercially exploited fish and shellfish species of Kerala. Mar. Fish. Inf. Service T & E Ser. No. 220, 3–7 (2014).

    Google Scholar 

  • 39.

    Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer Associates, 2006).

    Google Scholar 

  • 40.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Chatterjee, A. et al. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth. Syst. Sci. 121, 559–593 (2012).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Nair, A. K. K., Balan, K. & Prasannakumari, B. The fishery of the oil sardine (Sardinella longiceps) during the past 22 years. Indian J. Fish. 20, 223–227 (1973).

    Google Scholar 

  • 43.

    Krishnakumar, P. K. & Bhat, G. S. Seasonal and inter annual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995–2004 and their influences on the pelagic fishery. Fish. Oceanogr. 17, 45–60 (2008).

    Article 

    Google Scholar 

  • 44.

    Hamza, F., Valsala, V., Mallissery, A. & George, G. Climate impacts on the landings of Indian oil sardine over the south-eastern Arabian Sea. Fish Fish. 22, 175–193 (2021).

    Article 

    Google Scholar 

  • 45.

    Shankar, D., Vinayachandran, P. N. & Unnikrishnan, A. S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63–120 (2002).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Shetye, S. R. & Gouveia, A. D. Coastal Circulation in the North Indian Ocean: Coastal Segment (14, SW) (Wiley, 1998).

    Google Scholar 

  • 47.

    Kumar, S. P. et al. High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr. Sci. India 1, 1633–1638 (2001).

    Google Scholar 

  • 48.

    Frichot, E. & Francois, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Article 

    Google Scholar 

  • 49.

    Raja, A. B. T. The Indian Oil Sardine. Kochi. Central Mar. Fish. Res. Inst. Bull. No. 16, 151 (1969).

    Google Scholar 

  • 50.

    Nair, R. V. & Chidambaram, K. Review of the oil sardine fishery. Proc. Natl. Acad. Sci. India 17, 71–85 (1951).

    Google Scholar 

  • 51.

    Rijavec, L., Krishna Rao, K. & Edwin, D. G. P. Distribution and Abundance of Marine Fish Resources Off the Southwest Coast of India (Results of Acoustic Surveys, 1976–1978) (Food and Agriculture Organization of the United Nations, 1982).

    Google Scholar 

  • 52.

    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).

    Article 

    Google Scholar 

  • 53.

    Catchen, J. et al. The population structure and recent colonisation history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol. Ecol. 22, 2864–2883 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Schott, F. A. & McCreary, J. P. Jr. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Aykanat, T. et al. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population. Mol. Ecol. 24, 5158–5174 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Xu, J. et al. Genomic basis of adaptive evolution: the survival of Amur ide (Leuciscus waleckii) in an extremely alkaline environment. Mol. Biol. Evol. 34, 145–149 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Pappas, F. & Palaiokostas, C. Genotyping strategies using ddRAD sequencing in farmed arctic charr (Salvelinus alpinus). Animals 11, 899 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Gleason, L. U. & Burton, R. S. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol. Ecol. 25, 3557–3573 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Bailey, D. A., Lynch, A. H. & Hedstrom, K. S. Impact of ocean circulation on regional polar climate simulations using the Arctic Region Climate System Model. Ann. Glaciol. 25, 203–207 (1997).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Oomen, R. A. & Hutchings, J. A. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish. Conserv. Physiol. 3, p.cov027 (2015).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Cury, P. et al. Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).

    Article 

    Google Scholar 

  • 62.

    Marshall, D. J. & Morgan, S. G. Ecological and evolutionary consequences of linked life-history stages in the sea. Curr. Biol. 21, R718–R725 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Churchill, J. H., Runge, J. & Chen, C. Processes controlling retention of spring-spawned Atlantic cod (Gadus morhua) in the western Gulf of Maine and their relationship to an index of recruitment success. Fish Oceanogr. 20, 32–46 (2011).

    Article 

    Google Scholar 

  • 64.

    John, S., Muraleedharan, K. R., Azeez, S. A. & Cazenave, P. W. What controls the flushing efficiency and particle transport pathways in a tropical estuary? Cochin Estuary, Southwest Coast of India. Water 12, 908 (2020).

    Article 

    Google Scholar 

  • 65.

    Seena, G., Muraleedharan, K. R., Revichandran, C., Azeez, S. A. & John, S. Seasonal spreading and transport of buoyant plumes in the shelf off Kochi, South west coast of India A modeling approach. Sci. Rep. UK 9, 1–15 (2019).

    ADS 

    Google Scholar 

  • 66.

    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Gruss, A. & Robinson, J. Fish populations forming transient spawning aggregations: Should spawners always be the targets of spatial protection efforts?. ICES J. Mar. Sci. 72, 480–497 (2015).

    Article 

    Google Scholar 

  • 68.

    Chollett, I., Priest, M., Fulton, S. & Heyman, W. D. Should we protect extirpated fish spawning aggregation sites?. Biol. Conserv. 241, 108395 (2020).

    Article 

    Google Scholar 

  • 69.

    Nielsen, E. E., Hemmer-Hansen, J. A. K. O. B., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Johannesson, K., Smolarz, K., Grahn, M. & Andre, C. The future of Baltic Sea populations: Local extinction or evolutionary rescue?. Ambio 40, 179–190 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Wang, L. et al. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS ONE 8, e83493 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Brennan, R. S., Hwang, R., Tse, M., Fangue, N. A. & Whitehead, A. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comp. Biochem. Phys. B 196, 11–19 (2016).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Fan, S., Elmer, K. R. & Meyer, A. Genomics of adaptation and speciation in cichlid fishes: Recent advances and analyses in African and Neotropical lineages. Philos. T. R. Soc. B. 367, 385–394 (2012).

    Article 

    Google Scholar 

  • 74.

    Turner, T. L. & Hahn, M. W. Genomic islands of speciation or genomic islands and speciation?. Mol. Ecol. 19, 848–850 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Wolf, J. B. & Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Christensen, C., Jacobsen, M. W., Nygaard, R. & Hansen, M. M. Spatiotemporal genetic structure of anadromous Arctic char (Salvelinus alpinus) populations in a region experiencing pronounced climate change. Conserv. Genet. 19, 687–700 (2018).

    Article 

    Google Scholar 

  • 79.

    Nielsen, E. E. et al. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 1–11 (2009).

    Article 
    CAS 

    Google Scholar 

  • 80.

    Vivekanandan, E., Rajagopalan, M. & Pillai, N. G. K. Recent trends in sea surface temperature and its impact on oil sardine. In Global Climate Change and Indian Agriculture (eds Aggarwal, P. K. et al.) 89–92 (Indian Council of Agricultural Research, 2009).

    Google Scholar 

  • 81.

    DeTolla, L. J. et al. Guidelines for the care and use of fish in research. Ilar J. 1(37), 159–173 (1995).

    Article 

    Google Scholar 

  • 82.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Andrews, S. FASTQC. A Quality Control Tool for High Throughput Sequence Data (Babraham Institute, 2010).

    Google Scholar 

  • 84.

    Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: A road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).

    Article 

    Google Scholar 

  • 85.

    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Felsenstein, J. PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  • 89.

    Andrew, R. Tree Figure Drawing Tool Version 1.4.2 2006–2014 (Institute of Evolutionary, Biology University of Edinburgh, 2014).

    Google Scholar 

  • 90.

    Bonnet, E. & Van de Peer, Y. zt: A sofware tool for simple and partial mantel tests. J. Stat. Softw. 7, 1 (2002).

    Article 

    Google Scholar 

  • 91.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Lischer, H. E. & Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Chen, C., Liu, H. & Beardsley, R. C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20, 159–186 (2003).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How marsh grass protects shorelines

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes