in

Gharial nesting in a reservoir is limited by reduced river flow and by increased bank vegetation

[adace-ad id="91168"]
  • 1.

    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. Freshw. Sci. 29, 344–358 (2010).

    Google Scholar 

  • 2.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    PubMed  Article  Google Scholar 

  • 3.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    PubMed  Article  Google Scholar 

  • 4.

    He, F. et al. Freshwater megafauna diversity: Patterns, status and threats. Divers. Distrib. 24, 1395–1404 (2018).

    Article  Google Scholar 

  • 5.

    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).

    Article  Google Scholar 

  • 6.

    Nilsson, C. & Berggren, K. Alterations of riparian ecosystems caused by river regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. BioScience 50, 783–792 (2000).

  • 7.

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Nilsson, C. & Svedmark, M. Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environ. Manag. 30, 468–480 (2002).

    Article  Google Scholar 

  • 9.

    Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    PubMed  Article  Google Scholar 

  • 10.

    Junk, W. J. & Wantzen, K. M. The flood pulse concept: New aspects, approaches and applications-an update. in Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries (eds. Welcomme, R. L. & Petr, T.) 117–149 (Bangkok: Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, 2004).

  • 11.

    Wiens, J. A. Riverine landscapes: Taking landscape ecology into the water. Freshw. Biol. 47, 501–515 (2002).

    Article  Google Scholar 

  • 12.

    Benda, L. et al. The network dynamics hypothesis: How channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).

    Article  Google Scholar 

  • 13.

    Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).

    Article  Google Scholar 

  • 14.

    Castro, J. M. & Thorne, C. R. The stream evolution triangle: Integrating geology, hydrology, and biology. River Res. Appl. 35, 315–326 (2019).

    Article  Google Scholar 

  • 15.

    Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 365, eaaw2087 (2019).

  • 16.

    Van Looy, K. et al. The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Res. Appl. 35, 107–120 (2019).

    Article  Google Scholar 

  • 17.

    Braulik, G. T., Arshad, M., Noureen, U. & Northridge, S. P. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus River Dolphin (Platanista gangetica minor). PLoS ONE 9, e101657 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Lang, J., Chowfin, S. & Ross, J. P. Gavialis gangeticus. in The IUCN Red List of Threatened Species 2019: e.T8966A3148543 (2019). https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T8966A3148543.en.

  • 19.

    He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 (2019).

    ADS  Article  Google Scholar 

  • 20.

    Khanal, G. et al. Irrigation demands aggravate fishing threats to river dolphins in Nepal. Biol. Conserv. 204, 386–393 (2016).

    Article  Google Scholar 

  • 21.

    Paudel, S., Timilsina, Y. P., Lewis, J., Ingersoll, T. & Jnawali, S. R. Population status and habitat occupancy of endangered river dolphins in the Karnali River system of Nepal during low water season. Mar. Mammal Sci. 31, 707–719 (2015).

    Article  Google Scholar 

  • 22.

    Whitaker, R. & Basu, D. The Gharial (Gavialis gangeticus): A review. J. Bombay Nat. Hist. Soc. 79, 531–548 (1983).

    Google Scholar 

  • 23.

    Vesipa, R., Camporeale, C. & Ridolfi, L. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Adv. Water Resour. 110, 29–50 (2017).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Merritt, D. M. & Cooper, D. J. Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regul. Rivers Res. Mgmt. 16, 543–564 (2000).

    Article  Google Scholar 

  • 25.

    Latterell, J. J., Bechtold, J. S., O’keefe, T. C., Pelt, R. V. & Naiman, R. J. Dynamic patch mosaics and channel movement in an unconfined river valley of the Olympic Mountains. Freshw. Biol. 51, 523–544 (2006).

  • 26.

    Braatne, J. H., Rood, S. B., Goater, L. A. & Blair, C. L. Analyzing the impacts of dams on riparian ecosystems: A review of research strategies and their relevance to the Snake River through Hells Canyon. Environ. Manag. 41, 267–281 (2008).

    ADS  Article  Google Scholar 

  • 27.

    Merritt, D. M., Scott, M. L., LeRoy, P. N., Auble, G. T. & Lytle, D. A. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshw. Biol. 55, 206–225 (2010).

    Article  Google Scholar 

  • 28.

    Poff, N. L. & Zimmerman, J. K. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205 (2010).

    Article  Google Scholar 

  • 29.

    Miller, K. A., Webb, J. A., de Little, S. C. & Stewardson, M. J. Environmental flows can reduce the encroachment of terrestrial vegetation into river channels: A systematic literature review. Environ. Manag. 52, 1202–1212 (2013).

    ADS  Article  Google Scholar 

  • 30.

    Tonkin, J. D., Merritt, D. M., Olden, J. D., Reynolds, L. V. & Lytle, D. A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93 (2018).

    PubMed  Article  Google Scholar 

  • 31.

    Liro, M. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers. Sci. Total Environ. 651, 2899–2912 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 32.

    Volke, M. A., Johnson, W. C., Dixon, M. D. & Scott, M. L. Emerging reservoir delta-backwaters: Biophysical dynamics and riparian biodiversity. Ecol. Monogr. 89, e01363 (2019).

    Article  Google Scholar 

  • 33.

    Choudhury, S. Seasonal habitat use and resource partitioning between two sympatric crocodilian populations (Gavialis gangeticus & Crocodylus palustris) in Katerniaghat Wildlife Sanctuary, India. Master’s thesis submitted to Saurashtra University, Rajkot, Gujarat, India (2011)

  • 34.

    MacClune, K. et al. Urgent case for recovery: What we can learn from the August 2014 Karnali River floods in Nepal. in Technical Report. Zurich Insurance Group Ltd, Zurich, ISET-International, Boulder 1–44 (2015).

  • 35.

    Lang, J. W. & Kumar, P. Behavioral ecology of gharial on the chambal river, India. in Crocodiles. Proceedings of the 22nd Working Meeting of the IUCN-SSC Specialist Group. 42–52 (IUCN, Gland, 2013)

  • 36.

    Lang, J. W. & Kumar, P. Chambal gharial ecology project-2016 update. in Crocodiles. Proceedings of the 24th Working Meeting of the IUCN-SSC Specialist Group. 136–148 (IUCN, Gland, 2016)

  • 37.

    Gladfelter, S. R. Training rivers, Training people: Interrogating the making of disasters and the politics of response in Nepal’s lower Karnali River basin. Master’s thesis, University of Colorado (2017). https://floodresilience.net/resources/item/training-rivers-training-people-interrogating-the-making-of-disasters-and-the-politics-of-response-in-nepals-lower-karnali-river-basin.

  • 38.

    Kolbe, J. J. & Janzen, F. J. Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats. Ecology 83, 269–281 (2002).

    Article  Google Scholar 

  • 39.

    Brown, G. P. & Shine, R. Maternal nest-site choice and offspring fitness in a tropical snake (Tropidonophis mairii, Colubridae). Ecology 85, 1627–1634 (2004).

    Article  Google Scholar 

  • 40.

    López-Luna, M. A., Hidalgo-Mihart, M. G., Aguirre-León, G., González-Ramón, M. D. C. & Rangel-Mendoza, J. A. Effect of nesting environment on incubation temperature and hatching success of Morelet’s crocodile (Crocodylus moreletii) in an urban lake of Southeastern Mexico. J. Therm. Boil. 49, 66–73 (2015).

    Article  Google Scholar 

  • 41.

    Calverley, P. M. & Downs, C. T. The past and present nesting ecology of Nile crocodiles in Ndumo Game Reserve, South Africa: Reason for concern?. J. Herpetol. 51, 19–26 (2017).

    Article  Google Scholar 

  • 42.

    Somaweera, R., Brien, M. L., Platt, S. G., Manolis, C. & Webber, B. L. Direct and indirect interactions with vegetation shape crocodylian ecology at multiple scales. Freshw. Biol. 64, 257–268 (2019).

    Google Scholar 

  • 43.

    Lang, J. W. & Andrews, H. V. Temperature-dependent sex determination in crocodilians. J. Exp. Zool. 270, 28–44 (1994).

    Article  Google Scholar 

  • 44.

    Andrews, H. V. & Whitaker, N. Captive breeding and reproductive biology of the Indian Gharial Gavialis gangeticus (Gmelin). in Crocodiles. Proceedings of the 17th Working Meeting of the IUCN-SSC Crocodile Specialist Group. 401–411 (IUCN, Gland, 2004).

  • 45.

    Rhen, T. & Lang, J. W. Phenotypic effects of incubation temperature in reptiles. In Temperature-dependent sex determination in vertebrates (eds. Valenzuela, N. & Lance, V. A.) 90–98 (Smithsonian Books, Washington, 2004).

  • 46.

    Singh, V. P. Status of the gharial in Uttar Pradesh and its rehabilitation. J. Bombay Nat. Hist. Soc. 75(3), 668–683 (1979).

    ADS  Google Scholar 

  • 47.

    Basu, D. The gharial of Katerniaghat. Sanctuary 11, 36–43 (1991).

    Google Scholar 

  • 48.

    Srivastava, A. K. The biology of Indian gharial, Gavialis gangeticus, with special reference to its behaviour. PhD thesis submitted at University of Lucknow, Uttar Pradesh, India (1981).

  • 49.

    Singh, V. P. Evaluation of gharial rehabilitation U.P. forestry project. Report prepared for biodiversity research, aided by World bank. 1–49 (2003).

  • 50.

    Andrews, H. V. Status of the Indian gharial, conservation action and assessment of key locations in North India. Unpublished report to Cleveland Metro Park. 1–8 (2006).

  • 51.

    Whitaker, R. The gharial: Going extinct again. Iguana 14, 24–33 (2007).

    Google Scholar 

  • 52.

    Chaudhari, S. Gharial reproduction and mortality. Iguana 15, 150–153 (2008).

    Google Scholar 

  • 53.

    Converse L. Katerniaghat Gharial Project 2008–2009. Report of Preliminary Findings. A Report to GCA and James Cook University, Australia. 1–8 (2009).

  • 54.

    Das, A., Basu, D., Converse, L. & Choudhury, S. C. Herpetofauna of Katerniaghat Wildlife Sanctuary, Uttar Pradesh, India. JoTT. 4, 2553–2568 (2012).

    Google Scholar 

  • 55.

    Choudhary, S., Choudhury, B. C. & Gopi, G. V. Differential response to disturbance factors for the population of sympatric crocodilians (Gavialis gangeticus and Crocodylus palustris) in Katarniaghat Wildlife Sanctuary, India. Aquat. Conserv. 27, 946–952 (2017).

    Article  Google Scholar 

  • 56.

    Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Article  Google Scholar 

  • 57.

    Figueiredo, L., Krauss, J., Steffan‐Dewenter, I. & Sarmento Cabral, J. Understanding extinction debts: Spatio-temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).

  • 58.

    Bashyal, A. et al. Gharials (Gavialis gangeticus) in Bardiya National Park of Nepal: Population, habitat, and threats. Aquat. Conserv. (in press).

  • 59.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Jensen, J. R. Remote Sensing of the Environment: An Earth Resource Perspective (Pearson Prentice Hall, Upper Saddle River, 2007).

    Google Scholar 

  • 61.

    Cohen, J. A. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).

    Article  Google Scholar 

  • 62.

    Killick, R., Haynes, K. & Eckley, I. A. Changepoint: An R package for changepoint analysis. R package version 2.2.2 (2016). https://CRAN.R-project.org/package=changepoint

  • 63.

    Carpenter, S. R. & Kinne, O. Regime Shifts in Lake Ecosystems: Pattern and Variation, Vol. 15 (International Ecology Institute, Oldendorf/Luhe, 2003).

  • 64.

    Whited, D. C. et al. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern. Ecology 88, 940–953 (2007).

    PubMed  Article  Google Scholar 

  • 65.

    Heffernan, J. B. Wetlands as an alternative stable state in desert streams. Ecology 89, 1261–1271 (2008).

    PubMed  Article  Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2013). http://www.R-project.org/.


  • Source: Ecology - nature.com

    King Climate Action Initiative announces new research to test and scale climate solutions

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)