in

Impact of environmental changes on the behavioral diversity of the Odonata (Insecta) in the Amazon

[adace-ad id="91168"]
  • 1.

    Córdoba-Aguilar, A., González-Tokman, D. & González-Santoyo, I. Insect Behaviour (Oxford University Press, 2018).

    Google Scholar 

  • 2.

    Shuker, D. M. & Simmons, L. W. The Evolution of Insect Mating Systems (Oxford University Press, 2014).

    Google Scholar 

  • 3.

    Cade, W. Alternative male reproductive behaviors. Florida Entomol. 63, 30–35 (1980).

    Google Scholar 

  • 4.

    Eberhard, W. G. Copulatory courtship and cryptic female choice in insects. Biol. Rev. 66, 1–31. https://doi.org/10.1111/j.1469-185X.1991.tb01133.x (1991).

    Google Scholar 

  • 5.

    Matthews, R. V. & Matthews, J. R. Insect Behavior (Springer, 2010).

    Google Scholar 

  • 6.

    Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Comstock Publishing Associates, 1999).

    Google Scholar 

  • 7.

    Córdoba-Aguilar, A. Dragonflies and Damselflies. Model Organisms for Ecological and Evolutionary Research (Oxford University Press, 2008).

    Google Scholar 

  • 8.

    Suhonen, J., Rantala, M. J. & Honkavaara, J. Territoriality in odonates. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 203–217 (Oxford University Press, 2008).

    Google Scholar 

  • 9.

    Guillermo-Ferreira, R. & Del-Claro, K. Resource defense polygyny by Hetaerina rosea Selys (Odonata: Calopterygidae): Influence of age and wing pigmentation. Neotrop. Entomol. 40, 78–84 (2011).

    Google Scholar 

  • 10.

    Guillermo-Ferreira, R. & Del-Claro, K. Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. Int. J. Odonatol. 14, 275–279 (2011).

    Google Scholar 

  • 11.

    Guillermo-Ferreira, R., Therézio, E. M., Gehlen, M. H., Bispo, P. C. & Marletta, A. The role of wing pigmentation, UV and fluorescence as signals in a neotropical damselfly. J. Insect Behav. 27, 67–80 (2014).

    Google Scholar 

  • 12.

    Guillermo-Ferreira, R., Gorb, S. N., Appel, E., Kovalev, A. & Bispo, P. C. Variable assessment of wing colouration in aerial contests of the red-winged damselfly Mnesarete pudica (Zygoptera, Calopterygidae). Sci. Nat. 102, 13 (2015).

  • 13.

    Guillermo-Ferreira, R. & Bispo, P. C. Male and female interactions during courtship of the Neotropical damselfly Mnesarete pudica (Odonata: Calopterygidae). Acta Ethol. 15, 173–178 (2012).

    Google Scholar 

  • 14.

    Gibbons, D. W. & Pain, D. The influence of river flow rate on the breeding behaviour of calopteryx damselflies. J. Anim. Ecol. 61, 283–289 (1992).

    Google Scholar 

  • 15.

    Robertson, H. M. Mating behaviour and its relationship to territoriality in Platycypha caligata (Selys) (Odonata: Chlorocyphidae). Behaviour 79, 11–26 (1982).

    Google Scholar 

  • 16.

    Conrad, K. F. & Pritchard, G. An ecological classification of odonate mating systems: The relative influence of natural, inter-and intra-sexual selection on males. Biol. J. Linn. Soc. 45, 255–269 (1992).

    Google Scholar 

  • 17.

    Cordero-Rivera, A. & Andrés, J. A. Male coercion and convenience polyandry in a Calopterygid damselfly (Odonata). J. Insect Sci. https://doi.org/10.1093/jis/2.1.14 (2002).

    Google Scholar 

  • 18.

    Miguel, T. B., Calvão, L. B., Vital, M. V. C. & Juen, L. A scientometric study of the order Odonata with special attention to Brazil. Int. J. Odonatol. 20, 27–42 (2017).

    Google Scholar 

  • 19.

    Berger-Tal, O. et al. A systematic survey of the integration of animal behavior into conservation. Biol. Conserv. 30, 744–753 (2016).

    Google Scholar 

  • 20.

    Cordero-Rivera, A. Behavioral diversity (ethodiversity): A neglected level in the study of biodiversity. Front. Ecol. Evol. 5, 1–7 (2017).

    Google Scholar 

  • 21.

    Guillermo-Ferreira, R. & Juen, L. Behavioral syndromes as bioindicators of anthropogenic impact. Int. J. Odonatol. (In press) (2020).

  • 22.

    Oliveira-Roque, F. et al. The Tinbergen shortfall: Developments on aquatic insect behavior that Are critical for freshwater conservation. In Aquatic Insects (eds Del-Claro, K. & Guillermo, R.) 365–380 (Springer, 2019).

    Google Scholar 

  • 23.

    Caro, T. & Sherman, P. W. Vanishing behaviors. Conserv. Lett. 5, 159–166 (2012).

    Google Scholar 

  • 24.

    Harabiš, F., Jakubec, P. & Hronková, J. Catch them if you can! Do traits of individual European dragonfly species affect their detectability?. Insect Conserv. Diver. https://doi.org/10.1111/icad.12378 (2019).

    Google Scholar 

  • 25.

    Oliveira-Junior, J. M. B. & Juen, L. The Zygoptera/Anisoptera Ratio (Insecta: Odonata): A New Tool for Habitat Alterations Assessment in Amazonian Streams. Neotrop. Entomol. 48, 552–560 (2019).

    Google Scholar 

  • 26.

    Silva, D. C. & Oliveira-Junior, J. M. B. Efeito da cobertura de dossel sobre a comunidade de Odonata (insecta) em igarapés na região de Santarém-Belterra (PA). Rev. Ibero-Am. Ciênc. Ambient. 9, 88–97 (2018).

    Google Scholar 

  • 27.

    Pereira, D. F. G., Oliveira-Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Indic. 98, 179–192 (2019).

    Google Scholar 

  • 28.

    Carvalho, F. G., Silva-Pinto, N., Oliveira-Junior, J. M. B. & Juen, L. Effects of marginal vegetation removal on Odonata communities. Acta Limnol. Bras. 25, 10–18 (2013).

    Google Scholar 

  • 29.

    Rodrigues, M. E., Roque, F. O., Guillermo-Ferreira, R., Saito, V. S. & Samways, M. J. Egg-laying traits reflect shifts in dragonfly assemblages in response to different amount of tropical forest cover. Insect Conserv. Diver. 12, 231–240 (2018).

    Google Scholar 

  • 30.

    De Marco, P., Batista, J. D. & Cabette, H. S. R. Community assembly of adult odonates in tropical streams: An ecophysiological hypothesis. PLoS ONE 10, e0123023 (2015).

    Google Scholar 

  • 31.

    Seidu, I., Danquah, E., Nsor, C. A., Kwarteng, D. A. & Lancaste, L. T. Odonata community structure and patterns of land use in the Atewa Range Forest Reserve, Eastern Region (Ghana). Int. J. Odonatol. 20, 173–189 (2017).

    Google Scholar 

  • 32.

    Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union. 38, 913–920 (1957).

    Google Scholar 

  • 33.

    Heino, J. & Peckarsky, B. L. Integrating behavioral, population and large-scale approaches for understanding stream insect communities. Curr. Opin. Insect Sci. 2, 7–13 (2014).

    Google Scholar 

  • 34.

    Cezário, R. R. et al. Sampling methods for dragonflies and damselflies. In Measuring Arthropod Biodiversity: A Handbook of Sampling Methods (eds Santos, J. C. & Fernandes, G. W.) 223–240 (Springer, 2020).

    Google Scholar 

  • 35.

    Lencioni, F. A. A. The Damselflies of Brazil in An Illustrated Guide—Coenagrionidae (All Print Editora, 2006).

    Google Scholar 

  • 36.

    Borror, D. J. A key to the New World genera of Libellulidae (Odonata). Ann. Entomol. Soc. Am. 38, 168–194 (1945).

    Google Scholar 

  • 37.

    Belle, J. Higher classification of the South-American Gomphidae (Odonata). Zool. Meded. 70, 298–324 (1996).

    Google Scholar 

  • 38.

    Garrison, R. W. A synopsis of the genus Hetaerina with descriptions of four new species (Odonata: Calopterigidae). Trans. Am. Entomol. Soc. 116, 175–259 (1990).

    Google Scholar 

  • 39.

    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide—The Non Coenagrionidae Families (All Print Editora, 2005).

    Google Scholar 

  • 40.

    Garrison, R. W., Von Ellenrieder, N. & Louton, J. A. Dragonfly Genera of the New Word: An Illustrated and Annotated Key to the Anisoptera (The Johns Hopkins University Press, 2006).

    Google Scholar 

  • 41.

    Garrison, R. W., Von Ellenrieder, N. & Louton, J. A. Damselfly genera of the New World in Baltimore, An Illustrated and Annotated Key to the Zygoptera (The Johns Hopkins University Press, 2010).

    Google Scholar 

  • 42.

    Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C. & Peck, D. V. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003 (US Environmental Protection Agency, 1999).

    Google Scholar 

  • 43.

    Juen, L. et al. Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Res. Appl. 32, 2081–2094 (2016).

    Google Scholar 

  • 44.

    Nessimian, J. L. et al. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614, 117–131 (2008).

    Google Scholar 

  • 45.

    Brasil, L. S., Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: A meta-analysis. Ecol. Ind. 116, 106495 (2020).

    Google Scholar 

  • 46.

    Bastos, R. C. et al. Morphological and phylogenetic factors structure the distribution of damselfly and dragonfly species (Odonata) along an environmental gradient in Amazonian streams. Ecol. Indic. 122, 107257 (2021).

    Google Scholar 

  • 47.

    Mendoza-Penagos, C. C., Calvão, L. B. & Juen, L. A new biomonitoring method using taxonomic families as substitutes for the suborders of the Odonata (Insecta) in Amazonian streams. Ecol. Indic. 124, 107388 (2021).

    Google Scholar 

  • 48.

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Google Scholar 

  • 49.

    Luiza-Andrade, A., Assis Montag, L. F. & Juen, L. Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics 111, 1643–1656 (2017).

    Google Scholar 

  • 50.

    Dalzochio, M. S. et al. Effect of tree plantations on the functional composition of Odonata species in the highlands of southern Brazil. Hydrobiologia 808, 283–300 (2018).

    Google Scholar 

  • 51.

    McCauley, S. J. Relationship between morphology, dispersal and habitat distribution in three species of Libellula (Odonata: Anisoptera). Aquat. Insects. 34, 195–204 (2012).

    Google Scholar 

  • 52.

    Turlure, C., Schtickzelle, N. & Baguette, M. Resource grain scales mobility and adult morphology in butterflies. Land. Ecol. 25, 95–108 (2010).

    Google Scholar 

  • 53.

    Reed, S. C., Williams, C. M. & Chadwick, L. E. Frequency of wing-beat as a character for separating species races and geographic varieties of Drosophila. Genetics 27, 349–361 (1942).

    Google Scholar 

  • 54.

    Hall, J. P. & Willmott, K. R. Patterns of feeding behaviour in adult male riodinid butterflies and their relationship to morphology and ecology. Biol. J. Linn. Soc. 69, 1–23 (2000).

    Google Scholar 

  • 55.

    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).

    Google Scholar 

  • 56.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Google Scholar 

  • 57.

    Stine, R. A. The graphical interpretation of variance inflation factors. Am. Stat. 49, 53–56. https://doi.org/10.1080/00031305.1995.10476113 (1995).

    Google Scholar 

  • 58.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Google Scholar 

  • 59.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-5, 1–298 (2019). https://CRAN.R-project.org/package=vegan.

  • 60.

    Chessel, D., Dufour, A. & Thioulouse, J. “The ade4 Package—I: One-Table Methods.” R News. 4, 5–10. https://cran.r-project.org/doc/Rnews/ (2004).

  • 61.

    Faraway, J. faraway: Functions and Datasets for Books by Julian Faraway. R package version 1, 1–117. (2016). https://CRAN.R-project.org/package=faraway

  • 62.

    Brasil, L. S. et al. Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic. Appl. Ecol. 35, 45–53 (2019).

    Google Scholar 

  • 63.

    Remsburg, A. J. & Turner, M. G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 28, 44–56 (2009).

    Google Scholar 

  • 64.

    Vilela, D. S., Ferreira, R. G. & Del-Claro, K. The Odonata community of a Brazilian vereda: Seasonal patterns, species diversity and rarity in a palm swamp environment. Bioscience 32, 486–495 (2016).

    Google Scholar 

  • 65.

    Sahlén, G. Specialists vs. generalists among dragonflies—The importance of forest environments to form diverse species pools. In Forests and Dragonflies (ed. Rivera, A. C.) 153–179 (Pensoft Publishers, 2006).

    Google Scholar 

  • 66.

    Winemiller, K. O. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol. Monogr. 61, 343–365 (1991).

    Google Scholar 

  • 67.

    Mc Peek M. A. Ecological factors limiting the distribuitions and abundances of Odonata. In Paulson, Dragonflies & Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 51–62 (Oxford University Press, 2008).

  • 68.

    Balzan, M. V. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: A spatio-temporal approach. J. Insect Sci. https://doi.org/10.1673/031.012.8701 (2012).

    Google Scholar 

  • 69.

    Ribeiro, J. R. I., Nessimian, J. L., Mendonça, E. C. & Carvalho, A. L. Aspectos da distribuição dos Nepomorpha (Hemípteros: Heterópteros) em corpos d ́água na restinga de Maricá, Estado do Rio de Janeiro. Oecol. Aust. 5, 113–128 (1998).

    Google Scholar 

  • 70.

    Juen, L. & De Marco, P. Dragonfly endemism in the Brazilian Amazon: Competing hypotheses for biogeographical patterns. Biodivers. Conserv. 21, 3507–3521 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    How trees and forests reduce risks from climate change

    Ekotrope makes building energy-efficient homes easier