in

Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

[adace-ad id="91168"]
  • 1.

    D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science. 2004;306:2216–21.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci. 2011;3:401–25.

    Article 

    Google Scholar 

  • 5.

    Thamdrup B, Rosselló-Mora R, Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol. 2000;66:2888–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, editor. Advances in microbial ecology. Boston, MA, US: Springer; 2000. p. 41–84.

  • 7.

    Jørgensen BB, Kasten S. Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006. p. 271–309.

  • 8.

    Bowles MW, Mogollón JM, Kasten S, Zabel M, Hinrichs K-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science. 2014;344:889–91.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Raiswell R, Hawkings JR, Benning LG, Baker AR, Death R, Albani S, et al. Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences. 2016;13:3887–900.

    CAS 
    Article 

    Google Scholar 

  • 11.

    Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun. 2014;5:3929.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Death R, Wadham JL, Monteiro F, Le Brocq AM, Tranter M, Ridgwell A, et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences. 2014;11:2635–43.

    Article 

    Google Scholar 

  • 13.

    Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso AA, et al. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci. 2017;29:277–91.

    Article 

    Google Scholar 

  • 14.

    Henkel S, Kasten S, Hartmann JF, Silva-Busso A, Staubwasser M. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. Geochim Cosmochim Acta. 2018;237:320–38.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Hodson A, Nowak A, Sabacka M, Jungblut A, Navarro F, Pearce D, et al. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nat Commun. 2017;8:14499.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Wang S, Bailey D, Lindsay K, Moore JK, Holland M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences. 2014;11:4713–31.

    CAS 
    Article 

    Google Scholar 

  • 17.

    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Findlay AJ, Kamyshny A. Turnover rates of intermediate sulfur species (Sx2−, S0, S2O32−, S4O62, SO32−) in anoxic freshwater and sediments. Front Microbiol. 2017;8:2551.

  • 19.

    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochim Cosmochim Acta. 2020;280:441–52.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol. 1993;113:27–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Michaud AB, Laufer K, Findlay A, Pellerin A, Antler G, Turchyn AV, et al. Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochim Cosmochim Acta. 2020;280:423–40.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry. 2003;65:295–317.

    Article 

    Google Scholar 

  • 23.

    Beckler JS, Kiriazis N, Rabouille C, Stewart FJ, Taillefert M. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Mar Chem. 2016;178:22–34.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Riedinger N, Brunner B, Krastel S, Arnold GL, Wehrmann LM, Formolo MJ, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: the Argentine Continental Margin. Front Earth Sci. 2017;5:33.

    Article 

    Google Scholar 

  • 25.

    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta. 1994;58:5115–29.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev. 2013;123:53–86.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Franco M, De Mesel I, Diallo MD, Van Der Gucht K, Van Gansbeke D, Van, et al. Effect of phytoplankton bloom deposition on benthic bacterial communities in two contrasting sediments in the southern North Sea. Aquat Micro Ecol. 2007;48:241–54.

    Article 

    Google Scholar 

  • 29.

    Zonneveld KAF, Versteegh GJM, Kasten S, Eglinton TI, Emeis K-C, Huguet C, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences. 2010;7:483–511.

    CAS 
    Article 

    Google Scholar 

  • 30.

    Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A. 2012;109:E2846–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Zinke LA, Glombitza C, Bird JT, Røy H, Jørgensen BB, Lloyd KG, et al. Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry. Appl Environ Microbiol. 2019;85:e02164-18.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Yang J, Jiang H, Wu G, Dong H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep. 2016;6:25078.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Hicks N, Liu X, Gregory R, Kenny J, Lucaci A, Lenzi L, et al. Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Front Microbiol. 2018;9:1730.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 2013;7:685–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006.

  • 36.

    Geprägs P, Torres ME, Mau S, Kasten S, Römer M, Bohrmann G. Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic. Geochem, Geophys Geosystems. 2016;17:1401–18.

    Article 
    CAS 

    Google Scholar 

  • 37.

    Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser. 2001;216:279–308.

    CAS 
    Article 

    Google Scholar 

  • 38.

    Löffler B. Geochemische Prozesse und Stoffkreisläufe in Sedimenten innerhalb und außerhalb des Cumberland-Bay Fjordes, Süd Georgien. Bachelor Thesis. Bremen, Germany: University of Bremen; 2013.

  • 39.

    Köster M. (Bio-)geochemische Prozesse in den eisenreichen Seep-Sedimenten der Cumberland-Bucht Südgeorgiens, Subantarktis. Bachelor Thesis. Bremen, Germany: University of Bremen; 2014.

  • 40.

    Römer M, Torres M, Kasten S, Kuhn G, Graham AG, Mau S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett. 2014;403:166–77.

    Article 
    CAS 

    Google Scholar 

  • 41.

    Bohrmann G, Aromokeye AD, Bihler V, Dehning K, Dohrmann I, Gentz T, et al. R/V METEOR Cruise Report M134, emissions of free gas from cross-shelf troughs of South Georgia: distribution, quantification, and sources for methane ebullition sites in sub-Antarctic waters, Port Stanley (Falkland Islands)—Punta Arenas (Chile), 16 January–18 February 2017. 2017.

  • 42.

    Schnakenberg A, Aromokeye DA, Kulkarni A, Maier L, Wunder LC, Richter-Heitmann T, et al. Electron acceptor availability shapes Anaerobically Methane Oxidizing Archaea (ANME) communities in South Georgia sediments. Front Microbiol. 2021;12:726.

    Article 

    Google Scholar 

  • 43.

    Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change. 2011;79:99–109.

  • 44.

    Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods. 2005;3:361–71.

    Article 

    Google Scholar 

  • 45.

    Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Ovreås L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.

  • 51.

    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.

    CAS 
    Article 

    Google Scholar 

  • 52.

    Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic Archaea. In: Dumont MG, Hernández García M, editors. Stable isotope probing: methods and protocols. New York, NY: Springer; 2019. p. 189–206.

  • 53.

    Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Evol Microbiol. 1991;41:324–5.

    CAS 

    Google Scholar 

  • 55.

    Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Lueders T, Friedrich MW. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol. 2002;68:2484–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons; 1991. p. 115–75.

  • 58.

    Großkopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol. 1998;64:960–9.

  • 59.

    Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiol J. 2017;34:840–50.

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kondo R, Nedwell DB, Purdy KJ, Silva SQ. Detection and enumeration of sulphate-reducing Bacteria in estuarine sediments by competitive PCR. Geomicrobiol J. 2004;21:145–57.

    CAS 
    Article 

    Google Scholar 

  • 61.

    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.

    Article 

    Google Scholar 

  • 62.

    R Core Team. R: a language and environment for statistical computing, 3.6.1. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org.

  • 63.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package, 2.5-6. 2019. Available from: https://CRAN.R-project.org/package=vegan.

  • 64.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Inkscape Team. Inkscape, 1.0.1. 2020. Available from: https://inkscape.org.

  • 68.

    Sun H, Spring S, Lapidus A, Davenport K, Glavina Del Rio T, Tice H, et al. Complete genome sequence of Desulfarculus baarsii type strain (2st14T). Stand Genom Sci. 2010;3:276–84.

    Article 

    Google Scholar 

  • 69.

    Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, et al. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol. 2015;91:fiv006.

  • 70.

    Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, et al. The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology. 2006;75:161–71.

  • 71.

    Rezadehbashi M, Baldwin SA. Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms. 2018;6:16.

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles. 2016;20:895–901.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159:336–44.

  • 75.

    Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Lovley DR, Coates JD, Saffarini DA, Lonergan DJ. Dissimilatory iron reduction. In: Winkelmann G, Carrano CJ, editors. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers; 1997. p. 187–215.

  • 77.

    Vandieken V, Finke N, Jørgensen BB. Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria. Mar Ecol Prog Ser. 2006;322:29–41.

    CAS 
    Article 

    Google Scholar 

  • 78.

    Vandieken V, Thamdrup B. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol. 2013;84:373–86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, et al. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol. 2015;6:386.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Vandieken V, Mußmann M, Niemann H, Jørgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Tu T-H, Wu L-W, Lin Y-S, Imachi H, Lin L-H, Wang P-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front Microbiol. 2017;8:2137.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol. 1993;113:41–53.

    CAS 
    Article 

    Google Scholar 

  • 84.

    Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing Bacterium from deep sediment layers in the Japan Sea. Int J Syst Evol Microbiol. 1997;47:515–21.

  • 85.

    Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol. 2003;44:261–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 2010;4:267–78.

  • 87.

    Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 2015;6:989.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol. 2015;6:987.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Schlosser C, Schmidt K, Aquilina A, Homoky WB, Castrillejo M, Mills RA, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean. Biogeosciences. 2018;15:4973–93.

    CAS 
    Article 

    Google Scholar 

  • 90.

    Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. 2015;1:e1500050.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Petro C, Starnawski P, Schramm A, Kjeldsen KU. Microbial community assembly in marine sediments. Aquat Micro Ecol. 2017;79:177–95.

    Article 

    Google Scholar 

  • 92.

    Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Marshall IPG, Ren G, Jaussi M, Lomstein BA, Jørgensen BB, Røy H, et al. Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 2019;13:1920–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Berner RA. Early diagenesis: a theoretical approach. Princeton, New Jersey: Princeton University Press; 1980.

  • 96.

    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Bissett A, Bowman JP, Burke CM. Flavobacterial response to organic pollution. Aquat Micro Ecol. 2008;51:31–43.

    Article 

    Google Scholar 

  • 98.

    Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 2009;106:19521–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Bowman JP, McCuaig RD. Biodiversity, community structural shifts, and biogeography of Prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol. 2003;69:2463–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Blazejak A, Schippers A. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol. 2010;72:198–207.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol. 2006;56:1331–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 103.

    Storesund JE, Øvreås L. Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek. 2013;104:569–84.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV, Bonch-Osmolovskaya EA. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol. 2015;65:549–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 105.

    Borrione I, Schlitzer R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean. Biogeosciences. 2013;10:217–31.

    Article 

    Google Scholar 

  • 106.

    Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 107.

    Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol. 1994;161:328–32.

    CAS 
    Article 

    Google Scholar 

  • 108.

    Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995;61:2132–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 109.

    An TT, Picardal FW. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0– and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well. Int J Syst Evol Microbiol. 2015;65:1686–93.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 110.

    Pjevac P, Kamyshny A Jr, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol. 2014;16:3416–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Miao Z-Y, He H, Tan T, Zhang T, Tang J-L, Yang Y-C, et al. Biotreatment of Mn2+ and Pb2+ with sulfate-reducing bacterium Desulfuromonas alkenivorans S-7. J Environ Eng. 2018;144:04017116.

    Article 

    Google Scholar 

  • 112.

    Buongiorno J, Herbert L, Wehrmann L, Michaud A, Laufer K, Røy H, et al. Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl Environ Microbiol. 2019;85:e00949-19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol. 2020;2:87–96.

    Article 

    Google Scholar 

  • 114.

    Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65:3982–9.

  • 115.

    Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol. 2003;69:2985–93.

  • 116.

    Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol. 2004;70:6023–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–5.

    Article 

    Google Scholar 

  • 118.

    Bryant M, Campbell LL, Reddy C, Crabill M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977;33:1162–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 119.

    Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 121.

    Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl Environ Microbiol. 2004;70:1234–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Lovley DR, Phillips EJP. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol. 1987;53:2636–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 124.

    Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta. 1993;57:3867–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 125.

    Jørgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr. 1977;22:814–32.

    Article 

    Google Scholar 

  • 126.

    Jørgensen BB, Laufer K, Michaud AB, Wehrmann LM. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—case study of Svalbard fjords. Limnol Oceanogr. 2021;66:S273–92.

    Article 
    CAS 

    Google Scholar 

  • 127.

    Laufer K, Michaud AB, Røy H, Jørgensen BB. Reactivity of iron minerals in the seabed toward microbial reduction—a comparison of different extraction techniques. Geomicrobiol J. 2020;37:170–89.

    Article 

    Google Scholar 

  • 128.

    Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.

    CAS 
    Article 

    Google Scholar 

  • 129.

    Riedinger N, Brunner B, Formolo MJ, Solomon E, Kasten S, Strasser M, et al. Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology. 2010;38:851–4.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere