in

Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants

[adace-ad id="91168"]
  • 1.

    Pontier, D. et al. Postnatal growth rate and adult body weight in mammals: A new approach. Oecologia 80, 390–394 (1989).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Gotthard, K., Nylin, S. & Wiklund, C. Adaptive variation in growth rate: Life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia 99, 281–289 (1994).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Arendt, J. D. Adaptive intrinsic growth rates: An integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).

    Article 

    Google Scholar 

  • 5.

    Gaillard, J. M. et al. Variation in growth form and precocity at birth in eutherian mammals. Proc. R. Soc. B Biol. Sci. 264, 859–868 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Gillooly, J. F., Charnov, E. L., Geoffrey, B. W., Savage, V. M. & James, H. B. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Brown, J. H., Gillooly, J. F., Allen, P. A., Savage, V. M. & Geoffrey, B. W. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 8.

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Sinauer Associates, 1992).

  • 9.

    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).

  • 10.

    Ferré, P., Decaux, J. F., Issad, T. & Girard, J. Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod. Nutr. Dev. 26, 619–631 (1986).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Gadgil, M. & Bossert, W. H. Life history consequences of natural selection. Am. Nat. 104, 1–24 (1970).

    Article 

    Google Scholar 

  • 12.

    Lee, A. H., Huttenlocker, A. K., Padian, K. & Woodward, H. N. Analysis of growth rates. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 217–264 (University of California Press, 2013).

  • 13.

    Amprino, R. L. structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroisement. Arch. Biol. (Liege) 58, 315–330 (1947).

    Google Scholar 

  • 14.

    Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PLoS One 13, 20 (2018).

    Google Scholar 

  • 15.

    Morris, P. A. A method for determining absolute age in the hedgehog. Notes Mammal Soc. 20, 277–280 (1970).

    Google Scholar 

  • 16.

    Castanet, et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004).

    Article 

    Google Scholar 

  • 17.

    Klevezal, G. A. & Kleinenberg, S. E. Age determination of mammals by layered structures of teeth and bones. (1967).

  • 18.

    Barker, J. M., Boonstra, R. & Schulte-Hostedde, A. I. Age determination in yellow-pine chipmunks (Tamias amoenus): A comparison of eye lens masses and bone sections. Can. J. Zool. 81, 1774–1779 (2003).

    Article 

    Google Scholar 

  • 19.

    Amson, E., Kolb, C., Scheyer, T. M. & Sánchez-Villagra, M. R. Growth and life history of Middle Miocene deer (Mammalia, Cervidae) based on bone histology. C.R. Palevol 14, 637–645 (2015).

    Article 

    Google Scholar 

  • 20.

    Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    de Buffrénil, V. & Pascal, M. Croissance et morphogénèse postnatales de la mandibule du vison (Mustela vison Schreiber): Données sur la dynamique et l’interprétation fonctionnelle des dépôts osseux mandibulaires. Can. J. Zool. 62, 2026–2037 (1984).

    Article 

    Google Scholar 

  • 22.

    Castanet, J., CurryRogers, K., Cubo, J. & Jacques-Boisard, J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus Acad. Sci. Ser. III Sci. Vie 323, 543–550 (2000).

    CAS 

    Google Scholar 

  • 23.

    Starck, J. M. & Chinsamy, A. Bone microstructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    de Margerie, E., Cubo, J. & Castanet, J. Bone typology and growth rate: Testing and quantifying ‘Amprino’s rule’ in the mallard (Anas platyrhynchos). Comptes Rendus Biol. 325, 221–230 (2002).

    Article 

    Google Scholar 

  • 25.

    de Margerie, E. et al. Assessing a relationship between bone microstructure and growth rate: A fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J. Exp. Biol. 207, 869–879 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J. Anat. https://doi.org/10.1111/joa.13404 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Smith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Kierdorf, H., Kierdorf, U., Frölich, K. & Witzel, C. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS One 8, 20 (2013).

    Google Scholar 

  • 29.

    Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. The pay-off of hypsodonty—timing and dynamics of crown growth and wear in molars of Soay sheep. BMC Evol. Biol. 18, 1–14 (2018).

    Article 

    Google Scholar 

  • 30.

    Kahle, P., Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. Mineral apposition rates in coronal dentine of mandibular first molars in Soay sheep: Results of a fluorochrome labeling study. Anat. Rec. 301, 902–912 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    van Gaalen, S. M. et al. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B. Rev. 16, 209–217 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Shim, M.-J. Bone changes in femoral bone of mice using calcein labeling. Korean J. Clin. Lab. Sci. 48, 114–117 (2016).

    Article 

    Google Scholar 

  • 33.

    Klevezal, G. A. Recording Structures of Mammals (Balkema Publishers, 1996).

  • 34.

    Klevezal, G. A. & Mina, M. V. Tetracycline labelling as a method of field studies of individual growth and population structure in rodents. Lynx (Praha) 22, 67–78 (1984).

    Google Scholar 

  • 35.

    Smith, T. M., Reid, D. J. & Sirianni, J. E. The accuracy of histological assessments of dental development and age at death. J. Anat. 208, 125–138 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Curtin, A. J. et al. Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. J. Vertebr. Paleontol. 32, 939–955 (2012).

    Article 

    Google Scholar 

  • 37.

    Hugi, J. & Snchez-Villagra, M. R. Life history and skeletal adaptations in the galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological dataa comparative study of iguanines. J. Herpetol. 46, 312–324 (2012).

    Article 

    Google Scholar 

  • 38.

    Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol. 51, 325–338 (2006).

    Google Scholar 

  • 39.

    Teagasc. Development of the Calf Digestive System. Teagasc Calf Rearing Manual: Best Practice from Birth to Three Months 59–76 (2017).

  • 40.

    Warren, L. K., Lawrence, L. M., Parker, A. L., Barnes, T. & Griffin, A. S. The effect of weaning age on foal growth and radiographic bone density. J. Equine Vet. Sci. 18, 335–340 (1998).

    Article 

    Google Scholar 

  • 41.

    Holland, J. L. et al. Weaning stress is affected by nutrition and weaning methods. Pferdeheilkunde 12, 257–260 (1996).

    Article 

    Google Scholar 

  • 42.

    Enríquez, D., Hötzel, M. J. & Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 53, 1–8 (2011).

    Article 

    Google Scholar 

  • 43.

    Pollard, J. C., Asher, G. W. & Littlejohn, R. P. Weaning date affects calf growth rates and hind conception dates in farmed red deer (Cervus elaphus). Anim. Sci. 74, 111–116 (2002).

    Article 

    Google Scholar 

  • 44.

    Wolter, B. F. & Ellis, M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 81, 363–369 (2001).

    Article 

    Google Scholar 

  • 45.

    Pluske, J. R., Dividich, J. L. & Verstegen, M. W. A. Weaning the pig. Concepts and Consequences Weaning the Pig (Wageningen Academic Publishers, 2003). https://doi.org/10.3920/978-90-8686-513-0.

  • 46.

    Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. The online version of this article, along with updated information and services, is located on the World Wide Web at: Milk production. J. Anim. Sci. 78, 2771–2777 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Wang, Y., Bekhit, A. E. D. A., Morton, J. D. & Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease 363–375 (2017). https://doi.org/10.1016/B978-0-12-809762-5.00028-0

  • 48.

    Stein, K. & Prondvai, E. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biol. Rev. 89, 24–47 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Clutton-Brock, T. H., Guiness, F. E. & Albon, S. D. Red Deer: Behaviour and Ecology of Two Sexes (The University of Chicago Press, 1982). https://doi.org/10.1016/0006-3207(83)90010-1.

  • 50.

    Festa-bianchet, M., Jorgenson, J. T. & Réale, D. Early development, adult mass, and reproductive success in bighorn sheep. Behav. Ecol. 11, 633–639 (2000).

    Article 

    Google Scholar 

  • 51.

    Cook, J. G. et al. Effects of summer–autumn nutrition and parturition date on reproduction and survival of elk. Wildl. Monogr. 20, 1–61 (2004).

    Google Scholar 

  • 52.

    Moore, G. H., Littlejohn, R. P. & Cowie, G. M. Liveweights, growth rates, and mortality of farmed red deer at Invermay. N. Z. J. Agric. Res. 31, 293–300 (1988).

    Article 

    Google Scholar 

  • 53.

    Ozanne, S. E. & Hales, C. N. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 126, 852–854 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Van Eetvelde, M. & Opsomer, G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod. Domest. Anim. 52, 30–36 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. 20, 205–216. https://doi.org/10.1111/joa.13016 (2019).

    Article 

    Google Scholar 

  • 56.

    Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).

    Article 

    Google Scholar 

  • 57.

    Padian, K., De Ricqlès, A. J. & Horner, J. R. Dinosaurian growth rates and bird-origins. Nature 412, 405–408 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Woodward, H. N., Padian, K. & Lee, A. H. Skeletochronology. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 195–216 (University of California Press, 2013).

  • 59.

    Pratt, I. V. & Cooper, D. M. L. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J. Anat. 233, 531–541 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Enlow, D. H. A study of the post-natal growth and remodelling of bone. Am. J. Anat. 110, 79–101 (1962).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Chinsamy-Turan, A. The Microstructure of Dinosaur Bone (The Johns Hopkins University Press, 2005).

  • 62.

    de Buffrénil, V. & Quilhac, A. Bone tissue types: A brief account of currently used categories. in Vertebrate Skeletal Histology and Paleohistology (eds. de Buffrénil, V., de Riclès, J. A., Zylbeberg, L. & Padian, K.) 148–192 (CRC Press, 2021).

  • 63.

    Padian, K., Lamm, E.-T. & Werning, S. Selection of specimens. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 35–54 (University of California Press, 2013).

  • 64.

    Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J. Anat. https://doi.org/10.1111/joa.13381 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. https://doi.org/10.1111/joa.13016 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Prondvai, E., Stein, K. H. W., de Ricqlès, A. & Cubo, J. Development-based revision of bone tissue classification: The importance of semantics for science. Biol. J. Linn. Soc. 112, 799–816 (2014).

    Article 

    Google Scholar 

  • 67.

    Francillon-Vieillot, H. et al. Microstructural and mineralization of vertebral skeletal tissues. In Skeletal Biommineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) (Van Nostrand Reinhold, 1990).

  • 68.

    Montes, L. et al. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: A phylogenetic approach. Biol. J. Linn. Soc. 92, 63–76 (2007).

    Article 

    Google Scholar 

  • 69.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Team, Rs. RStudio: Integrated Development for R. (2019).

  • 71.

    Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Pathfinder satellite paves way for constellation of tropical-storm observers

    Designing exploratory robots that collect data for marine scientists