in

Landscape condition influences energetics, reproduction, and stress biomarkers in grizzly bears

[adace-ad id="91168"]
  • 1.

    Coristine, L. E. & Kerr, J. T. Habitat loss, climate change, and emerging conservation challenges in Canada. Can. J. Zool. 89, 435–451 (2011).

    Article 

    Google Scholar 

  • 2.

    Proctor, M. F. et al. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States. Wildl. Monogr. 180, 1–46 (2012).

    Article 

    Google Scholar 

  • 3.

    Festa-Bianchet, M. Status of the grizzly bear (Ursus arctos) in Alberta: Update 2010. Wildlife Status Report No. 37. (Alberta Sustainable Resource Development, Fish and Wildlife Division, Alberta Conservation Association, Edmonton, Alberta, Canada, 2010).

  • 4.

    Berland, A., Nelson, T., Stenhouse, G., Graham, K. & Cranston, J. The impact of landscape disturbance on grizzly bear habitat use in Foothills Model Forest, Alberta, Canada. For. Ecol. Manag. 256, 1875–1883 (2008).

    Article 

    Google Scholar 

  • 5.

    Nielsen, S. E., Cranston, J. & Stenhouse, G. B. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38–60 (2009).

    Google Scholar 

  • 6.

    Boulanger, J. & Stenhouse, G. B. The impact of roads on the demography of grizzly bears in Alberta. PLoS ONE 9, e115535 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B Biol. Sci. 364, 3429–3438 (2009).

    Article 

    Google Scholar 

  • 8.

    Stephen, C. Toward a new definition of animal health: Lessons from the Cohen Commission and the SPS agreement. Optim. Online 43, 1–8 (2013).

    Google Scholar 

  • 9.

    Stephen, C. Toward a modernized definition of wildlife health. J. Wildl. Dis. 50, 427–430 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Wittrock, J., Duncan, C. & Stephen, C. A determinants of health conceptual model for fish and wildlife health. J. Wildl. Dis. 55, 285–297 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Stephen, C. The Pan-Canadian approach to wildlife health. Can. Vet. J. 60, 145–146 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ricklefs, R. E. & Wikelski, M. The physiology/life- history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Article 

    Google Scholar 

  • 13.

    Dammhahn, M., Dingemanse, N. J., Niemelä, P. T. & Réale, D. Pace-of-life syndromes: A framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 72, 62 (2018).

    Article 

    Google Scholar 

  • 14.

    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).

    Article 

    Google Scholar 

  • 15.

    Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 173, 87–112 (2003).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Garshelis, D., Gibeau, M. & Herrero, S. Grizzly bear demographics in and around Banff National Park and Kananaskis Country, Alberta. J. Wildl. Manag. 69, 277–297 (2005).

    Article 

    Google Scholar 

  • 17.

    Ferguson, S. H. & Mcloughlin, P. D. Effect of Energy Availability, Seasonality, and Geographic Range on Brown Bear Life History. Ecography (Cop.) 23, 193–200 (2000).

    Article 

    Google Scholar 

  • 18.

    Brewis, I. A. & Brennan, P. Proteomics Technologies for the Global Identification and Quantification of Proteins. Advances in Protein Chemistry and Structural Biology Vol. 80 (Elsevier, 2010).

    Google Scholar 

  • 19.

    Cox, J. & Mann, M. Is proteomics the new genomics?. Cell 130, 395–398 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Vidova, V. & Spacil, Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Hoofnagle, A. N. et al. Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin. Chem. 58, 777–781 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Percy, A. J., Chambers, A. G., Yang, J., Hardie, D. B. & Borchers, C. H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta 1844, 917–926 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Michaud, S. A. et al. Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Commun. Biol. 1, 1–9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Burke, H. B. Predicting clinical outcomes using molecular biomarkers. Biomark. Cancer 8, BIC.S33380 (2016).

    Article 

    Google Scholar 

  • 27.

    Zhang, A., Sun, H., Wang, P. & Wang, X. Salivary proteomics in biomedical research. Clin. Chim. Acta 415, 261–265 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Zmijewski, M. A. & Slominski, A. T. Neuroendocrinology of the skin: An overview and selective analysis. Dermatoendocrinol. 3, 3–10 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Slominski, A. T., Zmijewski, M. A., Plonka, P. M., Szaflarski, J. P. & Paus, R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159, 1992–2007 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Slominski, A. T. et al. Sensing the environment: Regulation of local and global homeostasis by the skin neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–98 (2012).

    Article 

    Google Scholar 

  • 32.

    Esmaili, S., Hemmati, M. & Karamian, M. Physiological role of adiponectin in different tissues: A review. Arch. Physiol. Biochem. 126, 67–73 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Ishaq, S., Kaur, H. & Bhatia, S. Clusterin: It’s implication in health and diseases. Ann. Appl. Bio-Sciences 4, R30–R34 (2017).

    Article 

    Google Scholar 

  • 34.

    Bali, S. & Utaal, M. S. Serum lipids and lipoproteins: A brief review of the composition, transport and physiological functions. Int. J. Sci. Rep. 5, 309 (2019).

    Article 

    Google Scholar 

  • 35.

    Linder, M. C. Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics 8, 887–905 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Dietzel, E., Floehr, J. & Jahnen-dechent, W. The biological role of fetuin-B in female reproduction. Ann. Reprod. Med. Treat 1(1), 1003 (2016).

    Google Scholar 

  • 37.

    Helliwell, R. J. A., Adams, L. F. & Mitchell, M. D. Prostaglandin synthases: Recent developments and a novel hypothesis. Prostaglandins Leukot. Essent. Fat. Acids 70, 101–113 (2004).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Meyer, E. J., Nenke, M. A., Rankin, W., Lewis, J. G. & Torpy, D. J. Corticosteroid-binding globulin: A review of basic and clinical advances. Horm. Metab. Res. 48, 359–371 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Hoter, A., El-Sabban, M. E. & Naim, H. Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19, 2560 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Bruschi, M. et al. Annexin a1 and autoimmunity: From basic science to clinical applications. Int. J. Mol. Sci. 19, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274–286 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Dieplinger, H. & Dieplinger, B. Afamin—A pleiotropic glycoprotein involved in various disease states. Clin. Chim. Acta 446, 105–110 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3—The “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Bteich, M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon 5, e02879 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Tóthová, C. & Nagy, O. Transthyretin in the evaluation of health and disease in human and veterinary medicine. In Pathophysiology—Altered Physiological States (ed. Gaze, D. C.) (IntechOpen, 2017). https://doi.org/10.5772/57353.

    Chapter 

    Google Scholar 

  • 46.

    Willis, E. L., Kersey, D. C., Durrant, B. S. & Kouba, A. J. The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS One 6, e21159 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Floehr, J. et al. Association of high fetuin-B concentrations in serum with fertilization rate in IVF: A cross-sectional pilot study. Hum. Reprod. 31, 630–637 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Khalkhali-Ellis, Z. Maspin: The new frontier. Clin. Cancer Res. 12, 7279–7283 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Chim, S. S. C. et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl. Acad. Sci. U.S.A. 102, 14753–14758 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Carillon, J., Rouanet, J. M., Cristol, J. P. & Brion, R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action. Pharm. Res. 30, 2718–2728 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Demers, N. & Bayne, C. Immediate increase of plasma protein complement C3 in response to an acute stressor. Fish Shellfish Immunol. 107, 411–413 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Bourbonnais, M. L., Nelson, T. A., Cattet, M. R. L., Darimont, C. T. & Stenhouse, G. B. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of alberta, canada. PLoS One 8, e83768 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Pop, M. I., Iosif, R., Miu, I. V., Rozylowicz, L. & Popescu, V. D. Combining resource selection functions and home-range data to identify habitat conservation priorities for brown bears. Anim. Conserv. 21, 352–362 (2018).

    Article 

    Google Scholar 

  • 55.

    Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359, 568–572 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Wasser, S. K. et al. Scat detection dogs in wildlife research and management: Application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can. J. Zool. 82, 475–492 (2004).

    Article 

    Google Scholar 

  • 57.

    Cristescu, B., Stenhouse, G. B., Symbaluk, M., Nielsen, S. E. & Boyce, M. S. Wildlife habitat selection on landscapes with industrial disturbance. Environ. Conserv. 43, 327–336 (2016).

    Article 

    Google Scholar 

  • 58.

    Naves, J., Wiegand, T., Revilla, E. & Delibes, M. Endangered species constrained by natural and human factors: The case of brown bears in northern Spain. Conserv. Biol. 17, 1276–1289 (2003).

    Article 

    Google Scholar 

  • 59.

    Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).

    Article 

    Google Scholar 

  • 60.

    Nielsen, S. E., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry: I. Selection of clearcuts by grizzly bears in west-central Alberta, Canada. For. Ecol. Manag. 199, 51–65 (2004).

    Article 

    Google Scholar 

  • 61.

    Larsen, T. A., Nielsen, S. E., Cranston, J. & Stenhouse, G. B. Do remnant retention patches and forest edges increase grizzly bear food supply?. For. Ecol. Manag. 433, 741–761 (2019).

    Article 

    Google Scholar 

  • 62.

    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).

    Article 

    Google Scholar 

  • 63.

    Wilson, A. E. et al. Population-level monitoring of stress in grizzly bears between 2004 and 2014. Ecosphere 11, e03181 (2020).

    Article 

    Google Scholar 

  • 64.

    Graham, K. & Stenhouse, G. B. Home range, movements, and denning chronology of the grizzly bear (Ursus arctos) in west-central Alberta. Can. Field-Nat. 128, 223–234 (2014).

    Article 

    Google Scholar 

  • 65.

    Blanchard, B. M. & Knight, R. R. Movements of yellowstone grizzly bears. Biol. Conserv. 58, 41–67 (1991).

    Article 

    Google Scholar 

  • 66.

    McLoughlin, P. D., Case, R. L., Gau, R. J., Ferguson, S. H. & Messier, F. Annual and seasonal movement patterns of barren-ground grizzly bears in the central northwest territories. Ursus 11, 79–86 (1999).

    Google Scholar 

  • 67.

    Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 116, 1784–1792 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Rivet, D. R., Nelson, O. L., Vella, C. A., Jansen, H. T. & Robbins, C. T. Systemic effects of a high saturated fat diet in grizzly bears (Ursus arctos horribilis). Can. J. Zool. 95, 797–807 (2017).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Rigano, K. S. et al. Life in the fat lane: Seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 187, 649–676 (2017).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Lee, Y. S. et al. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. J. Biol. Chem. 285, 22174–22185 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Ráez-bravo, A. et al. Acute phase proteins increase with sarcoptic mange status and severity in Iberian ibex (Capra pyrenaica, Schinz 1838). Parasitol. Res. 114, 4005–4010. https://doi.org/10.1007/s00436-015-4628-3 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 72.

    Agra, R. M. et al. Orosomucoid as prognosis factor associated with inflammation in acute or nutritional status in chronic heart failure. Int. J. Cardiol. 228, 488–494 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Mugahid, D. A. et al. Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy. Sci. Rep. 9, 1–16 (2019).

    Article 
    CAS 

    Google Scholar 

  • 74.

    Vella, C. A. et al. Regulation of metabolism during hibernation in brown bears (Ursus arctos): Involvement of cortisol, PGC-1α and AMPK in adipose tissue and skeletal muscle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 240, 110591 (2020).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Phoebus, I., Segelbacher, G. & Stenhouse, G. B. Do large carnivores use riparian zones? Ecological implications for forest management. For. Ecol. Manag. 402, 157–165 (2017).

    Article 

    Google Scholar 

  • 77.

    Nielsen, S. E., McDermid, G., Stenhouse, G. B. & Boyce, M. S. Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biol. Conserv. 143, 1623–1634 (2010).

    Article 

    Google Scholar 

  • 78.

    Bielli, P. & Calabrese, L. Cellular and molecular life sciences structure to function relationships in ceruloplasmin: A ‘moonlighting’ protein. Cell. Mol. Life Sci. 59, 1413–1427 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Pagano, A. M. et al. Energetic costs of locomotion in bears: Is plantigrade locomotion energetically economical?. J. Exp. Biol. 221, jeb175372 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 80.

    Kurki, S., Nikula, A., Helle, P. & Linden, H. Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81, 1985–1997 (2000).

    Google Scholar 

  • 81.

    Graham, K., Boulanger, J., Duval, J. & Stenhouse, G. Spatial and temporal use of roads by grizzly bears in west-central Alberta. Ursus 21, 43–56 (2010).

    Article 

    Google Scholar 

  • 82.

    McLellan, B. N. & Shackleton, D. M. Grizzly bears and resource-extraction industries: Effects of roads on behaviour, habitat use and demography. J. Appl. Ecol. 25, 451–460 (1988).

    Article 

    Google Scholar 

  • 83.

    Massey, A. J. et al. Relationship between hair and salivary cortisol and pregnancy in women undergoing IVF. Psychoneuroendocrinology 74, 397–405 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Benn, B. & Herrero, S. Grizzly bear mortality and human access in Banff and Yoho National Parks, 1971–98. Ursus 13, 213–221 (2002).

    Google Scholar 

  • 85.

    Nielsen, S. E. et al. Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. Biol. Conserv. 120, 101–113 (2004).

    Article 

    Google Scholar 

  • 86.

    Pagano, A. M., Peacock, E. & Mckinney, M. A. Remote biopsy darting and marking of polar bears. Mar. Mammal Sci. 30, 169–183 (2014).

    Article 

    Google Scholar 

  • 87.

    Berland, A., Nelson, T., Stenhouse, G., Graham, K. & Cranston, J. The impact of landscape disturbance on grizzly bear habitat use in the Foothills Model Forest, Alberta, Canada. For. Ecol. Manag. 256, 1875–1883 (2008).

    Article 

    Google Scholar 

  • 88.

    Stenhouse, G. et al. Grizzly bear associations along the eastern slopes of Alberta. Ursus 16, 31–40 (2005).

    Article 

    Google Scholar 

  • 89.

    Nielsen, S. E., Munro, R. H. M., Bainbridge, E. L., Stenhouse, G. B. & Boyce, M. S. Grizzly bears and forestry: II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. For. Ecol. Manag. 199, 67–82 (2004).

    Article 

    Google Scholar 

  • 90.

    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).

    Article 

    Google Scholar 

  • 91.

    McDermid, G. J. Remote Sensing for Large-Area, Multi-Jurisdictional Habitat Mapping. PhD Thesis. University of Waterloo: Canada. 258p (2005).

  • 92.

    Smulders, M. et al. Quantifying spatial-temporal patterns in wildlife ranges using STAMP: A grizzly bear example. Appl. Geogr. 35, 124–131 (2012).

    Article 

    Google Scholar 

  • 93.

    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).

    Article 

    Google Scholar 

  • 94.

    Franklin, S. E., Peddle, D. R., Dechka, J. A. & Stenhouse, G. B. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bar habitat mapping. Int. J. Remote Sens. 23, 4633–4652 (2002).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).

    Article 

    Google Scholar 

  • 96.

    Wilson, J. P. & Gallant, J. C. Terrain Analysis: Principles and Applications (Wiley, 2000).

    Google Scholar 

  • 97.

    Riley, S. J., DeGloria, S. D. & Elliot, R. A Terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sci. 5, 23–27 (1999).

    Google Scholar 

  • 98.

    Stoneberg, R. P. & Jonkel, C. J. Age determination of black bears by cementum layers. J. Wildl. Manag. 30, 411–414 (1966).

    Article 

    Google Scholar 

  • 99.

    Matson, G. M., Van Daele, L., Goodwin, E., Aumiller, A., Reynolds, H.V. & Hristienko, H. A Laboratory Manual for Cementum Age Determination of Alaskan Brown Bear First Premolar Teeth. 1–52 (Matson’s Laboratory, Milltown, MT, 1993).

  • 100.

    Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: Temporal and spatial considerations. BMC Ecol. 13, 1 (2013).

    CAS 
    Article 

    Google Scholar 

  • 101.

    Bourbonnais, M. L. et al. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear. Conserv. Physiol. 2, 1–14 (2014).

    Article 
    CAS 

    Google Scholar 

  • 102.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 103.

    Cattet, M. et al. The quantification of reproductive hormones in the hair of captive adult brown bears and their application as indicators of sex and reproductive state. Conserv. Physiol. 5, 1–21 (2017).

    Article 
    CAS 

    Google Scholar 

  • 104.

    Cattet, M. et al. Can concentrations of steroid hormones in brown bear hair reveal age class?. Conserv. Physiol. 6, 1–20 (2018).

    Article 
    CAS 

    Google Scholar 

  • 105.

    Carlson, R. et al. Development and application of an antibody-based protein microarray to assess stress in grizzly bears (Ursus arctos). Conserv. Physiol. 4, 1–17 (2016).

    Article 
    CAS 

    Google Scholar 

  • 106.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 107.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 109.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2020).


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific