in

Large-bodied birds are over-represented in unstructured citizen science data

[adace-ad id="91168"]
  • 1.

    Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294 (2017).

    Article 

    Google Scholar 

  • 3.

    Chandler, M. et al. Involving citizen scientists in biodiversity observation. In The GEO Handbook on Biodiversity Observation Networks 211–237 (Springer, 2017).

  • 4.

    McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Cons. 208, 15–28 (2017).

    Article 

    Google Scholar 

  • 5.

    Pereira, H. M. et al. Monitoring essential biodiversity variables at the species level. In The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).

  • 6.

    Wiggins, A. & Crowston, K. From conservation to crowdsourcing: A typology of citizen science. in 2011 44th Hawaii International Conference on System Sciences 1–10 (IEEE, 2011).

  • 7.

    Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge 105–122 (Springer, 2013).

  • 8.

    Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Welvaert, M. & Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus 5, 1890 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Callaghan, C. T., Rowley, J. J., Cornwell, W. K., Poore, A. G. & Major, R. E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project FeederWatch. Front. Ecol. Environ. 10, 305–307 (2012).

    Article 

    Google Scholar 

  • 12.

    Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).

    Article 

    Google Scholar 

  • 13.

    Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120 (2017).

    Article 

    Google Scholar 

  • 14.

    Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Cons. 169, 31–40 (2014).

    Article 

    Google Scholar 

  • 16.

    Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 1–9 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149 (2016).

    Article 

    Google Scholar 

  • 19.

    Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. Bioscience 71, 55–63 (2021).

    Google Scholar 

  • 20.

    Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).

    Article 

    Google Scholar 

  • 21.

    Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 1–14 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Martı́n-López, B., Montes, C., Ramı́rez, L. & Benayas, J. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370–1380 (2009).

  • 23.

    Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8, e1000385 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Aceves-Bueno, E. et al. The accuracy of citizen science data: A quantitative review. Bull. Ecol. Soc. Am. 98, 278–290 (2017).

    Article 

    Google Scholar 

  • 25.

    Davies, T. K., Stevens, G., Meekan, M. G., Struve, J. & Rowcliffe, J. M. Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographs sourced from the public. Wildl. Res. 39, 696–704 (2013).

    Article 

    Google Scholar 

  • 26.

    Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).

    Article 

    Google Scholar 

  • 27.

    van Strien, A. J., van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).

    Article 

    Google Scholar 

  • 28.

    Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).

    Article 

    Google Scholar 

  • 29.

    Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 20, 75–85 (2017).

    Article 

    Google Scholar 

  • 30.

    Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biol. Cons. 208, 5–14 (2017).

    Article 

    Google Scholar 

  • 31.

    Callaghan, C. T. et al. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodivers. Conserv. 29, 1323–1337 (2020).

    Article 

    Google Scholar 

  • 32.

    Birkin, L. & Goulson, D. Using citizen science to monitor pollination services. Ecol. Entomol. 40, 3–11 (2015).

    Article 

    Google Scholar 

  • 33.

    Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).

    Article 

    Google Scholar 

  • 34.

    Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western north america. Biol. Cons. 214, 343–346 (2017).

    Article 

    Google Scholar 

  • 35.

    Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154 (2014).

    Article 

    Google Scholar 

  • 36.

    Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    Article 

    Google Scholar 

  • 37.

    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).

    Article 

    Google Scholar 

  • 38.

    Bonney, R. et al. Next steps for citizen science. Science 343, 1436–1437 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Crall, A. W. et al. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 22, 745–764 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Jordan, R. C., Ballard, H. L. & Phillips, T. B. Key issues and new approaches for evaluating citizen-science learning outcomes. Front. Ecol. Environ. 10, 307–309 (2012).

    Article 

    Google Scholar 

  • 42.

    Evans, C. et al. The neighborhood nestwatch program: Participant outcomes of a citizen-science ecological research project. Conserv. Biol. 19, 589–594 (2005).

    Article 

    Google Scholar 

  • 43.

    Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Pocock, M. J. et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).

  • 45.

    Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61 (2017).

    Article 

    Google Scholar 

  • 46.

    Isaac, N. J. & Pocock, M. J. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531 (2015).

    Article 

    Google Scholar 

  • 47.

    Angulo, E. & Courchamp, F. Rare species are valued big time. PLoS ONE 4, e5215 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: A birdwatching example. Biol. Cons. 144, 2728–2732 (2011).

    Article 

    Google Scholar 

  • 49.

    Rowley, J. J. et al. FrogID: Citizen scientists provide validated biodiversity data on frogs of australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).

    Google Scholar 

  • 50.

    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers recording behaviour. Sci. Rep. 6, 33051 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A. & Wintle, B. A. A general model of detectability using species traits. Methods Ecol. Evol. 4, 45–52 (2013).

    Article 

    Google Scholar 

  • 52.

    Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 1564–1577 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).

    Article 

    Google Scholar 

  • 54.

    Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: Engaging birders in science and conservation. PLoS Biol 9, 1001220 (2011).

    Article 
    CAS 

    Google Scholar 

  • 55.

    GBIF.org (3rd December 2019). GBIF occurrence download. https://doi.org/10.15468/dl.lpwczr

  • 56.

    Gilfedder, M. et al. Brokering trust in citizen science. Soc. Nat. Resour. 32, 292–302 (2019).

    Article 

    Google Scholar 

  • 57.

    Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, 66 (2017).

    Google Scholar 

  • 58.

    Johnston, A. et al. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. BioRxiv 574392 (2019).

  • 59.

    Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: Ecological archives E096–269. Ecology 96, 3109–3109 (2015).

    Article 

    Google Scholar 

  • 60.

    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 62.

    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 64.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 65.

    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).

    Article 

    Google Scholar 

  • 66.

    Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).

    Article 

    Google Scholar 

  • 67.

    Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J. & Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 26, 1276–1290 (2020).

    Article 

    Google Scholar 

  • 68.

    Caley, P., Welvaert, M. & Barry, S. C. Crowd surveillance: Estimating citizen science reporting probabilities for insects of biosecurity concern. J. Pest. Sci. 93, 543–550 (2020).

    Article 

    Google Scholar 

  • 69.

    Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 6, 15 (2018).

    Article 

    Google Scholar 

  • 70.

    Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).

    Article 

    Google Scholar 

  • 71.

    Schlossberg, S., Chase, M. & Griffin, C. Using species traits to predict detectability of animals on aerial surveys. Ecol. Appl. 28, 106–118 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).

    Article 

    Google Scholar 

  • 73.

    Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 1–13 (2017).

    Article 

    Google Scholar 

  • 74.

    Schuetz, J. G. & Johnston, A. Characterizing the cultural niches of North American birds. Proc. Natl. Acad. Sci. 22, 10868–10873 (2019).

    Article 
    CAS 

    Google Scholar 

  • 75.

    Lišková, S. & Frynta, D. What determines bird beauty in human eyes?. Anthrozoös 26, 27–41 (2013).

    Article 

    Google Scholar 

  • 76.

    Tulloch, A. I., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Cons. 165, 128–138 (2013).

    Article 

    Google Scholar 

  • 77.

    Kobori, H. et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Pacifici, K. et al. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 98, 840–850 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Robinson, O. J. et al. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Divers. Distrib. 26, 976–986 (2020).

    Article 

    Google Scholar 

  • 81.

    van Strien, A. J., Termaat, T., Groenendijk, D., Mensing, V. & Kery, M. Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl. Ecol. 11, 495–503 (2010).

    Article 

    Google Scholar 

  • 82.

    Van der Wal, R. et al. Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. Ambio 44, 584–600 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Dennis, E. B., Morgan, B. J., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Stoudt, S., Goldstein, B. R. & De Valpine, P. Identifying charismatic bird species and traits with community science data. bioRxiv. https://doi.org/10.1101/2021.06.05.446577


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community