in

Larval cryopreservation as new management tool for threatened clam fisheries

[adace-ad id="91168"]
  • 1.

    Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Ruditapes decussatus (2021). http://www.fao.org/fishery/culturedspecies/Ruditapes_decussatus/es. Accessed 10 Feb 2020.

  • 2.

    Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Ruditapes philippinarum (2021). http://www.fao.org/fishery/species/3543/en. Accessed 10 Feb 2021.

  • 3.

    Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Venerupis corrugata (2021). http://www.fao.org/fishery/culturedspecies/Venerupis_pullastra/es. Accessed 10 Feb 2021.

  • 4.

    Trigo, J.E., Díaz, G.J., García, O.L., Guerra, Á. Moreira, Pérez, J.J., Roldán, E., Troncoso, J., & Urgorri, V. Guide to the Marine Mollusks of Galicia (Servizo de Publicacións da Universidade de Vigo, 2018).

  • 5.

    Pérez-García, C., Hurtado, N. S., Morán, P. & Pasantes, J. J. Evolutionary dynamics of rDNA clusters in chromosomes of five clam species belonging to the family Veneridae (Mollusca, Bivalvia). Biomed. Res. Int. https://doi.org/10.1155/2014/754012 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Bidegain, G. Ecological Dynamics of a Native and a Nonindigenous Clam Species: Implications for Conservation and Shellfishery Management (University of Cantabria, 2013).

    Google Scholar 

  • 7.

    Chung, E.-Y., Hur, S. B., Hur, Y.-B. & Lee, J. S. Gonadal maturation and artificial spawning of the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae), in Komso Bay. Korea. J. Fish. Sci. Tech. 4, 208–218 (2001).

    Google Scholar 

  • 8.

    Global Biodiversity Information Facility (GBIF). Ruditapes decussatus (2021). https://www.gbif.org/species/4372687. Accessed 10 Feb 2021.

  • 9.

    Global Biodiversity Information Facility (GBIF). Ruditapes philippinarum (2021). https://www.gbif.org/species/4372686. Accessed 10 Feb 2021.

  • 10.

    Global Biodiversity Information Facility (GBIF). Venerupis corrugata (2021). https://www.gbif.org/species/4372735. Accessed 10 Feb 2021.

  • 11.

    Matías, D., Joaquim, S., Leitão, A. & Massapina, C. Effect of geographic origin, temperature and timing of broodstock collection on conditioning, spawning success and larval viability of Ruditapes decussatus (Linné, 1758). Aquacult. Int. 17(3), 257–271 (2009).

    Article 

    Google Scholar 

  • 12.

    Park, K. L. & Choi, K. S. Application of enzyme-linked immunosorbent assay for studying of reproduction in the Manila clam Ruditapes philippinarum (Mollusca: Bivalvia): I. Quantifying eggs. Aquaculture 241(1–4), 667–687 (2004).

    Google Scholar 

  • 13.

    Ruiz, M., Tarifeño, E., Llanos-Rivera, A., Padget, C. & Campos, B. Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck, 1819). Rev. Biol. Mar. Oceanogr. 43(1), 51–61 (2008).

    Article 

    Google Scholar 

  • 14.

    Yap, W. G. Population biology of the Japanese little-neck clam, Tapes philippinarum, in Kaneohe Bay, Oahu, Hawaiian Islands. Pac. Sci. 31(3), 223–244 (1977).

    Google Scholar 

  • 15.

    Ojea, J. et al. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aquaculture 238, 451–468 (2004).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Asociación Empresarial de Acuicultura de España (APROMAR). La Acuicultura en España 2020. (Ministerio de Agricultura y Pesca, Alimentación y Medioambiente, 2020).

  • 17.

    Guerra, A. Clam production and cultivation in Galicia (NW Spain): The role of hatcheries. in Clam Fisheries and Aquaculture (eds. da Costa, F.) 255–289 (Nova Science Publishers, Inc., 2012).

  • 18.

    Borrel, Y. J. et al. Microsatellites and multiplex PCRs for assessing aquaculture practices of the grooved carpet shell Ruditapes decussatus in Spain. Aquaculture 426–427, 49–59. https://doi.org/10.1016/j.aquaculture.2014.01.010 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    da Costa, F., Aranda-Burgos, J.A., Cerviño-Otero, A., Fernández-Pardo, A., Louzán, A., Novoa, S., Ojea, J., & Martínez-Patiño, D. Clam hatchery and nursery culture. in Clam Fisheries and Aquaculture (eds. da Costa, F.) 217–253 (Nova Science Publishers, Inc., 2012).

  • 20.

    Frangoudes K., Marugán-Pintos B., & Pascual-Fernandez J.J. Gender in galician shell-fisheries: Transforming for governability. in Governability of Fisheries and Aquaculture (eds. Bavinck, M., Chuenpagdee, R., Jentoft, S., Kooiman, J.) Vol. 7. https://doi.org/10.1007/978-94-007-6107-0_13 (MARE Publication Series, Springer, 2013).

  • 21.

    Robert, R. et al. A glimpse on the mollusc industry in Europe. Aquacult. Eur. 38(1), 5–11 (2013).

    Google Scholar 

  • 22.

    da Costa, F., Cerviño-Otero, A., Iglesias, Ó., Cruz, A. & Guévélou, E. Hatchery culture of European clam species (family Veneridae). Aquacult. Int. 28, 1675–1708. https://doi.org/10.1007/s10499-020-00552-x (2020).

    Article 

    Google Scholar 

  • 23.

    Adams, S. L. et al. Towards cryopreservation of Greenshell mussel (Perna canaliculus) oocytes. Cryobiology 58, 69–74 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Comizzoli, P. Biobanking and fertility preservation for rare and endangered species. Anim. Reprod. 14(1), 30–33. https://doi.org/10.21451/1984-3143-AR889 (2017).

  • 25.

    Liu, Y., Li, X., Robinson, N. & Qin, J. Sperm cryopreservation in marine mollusk: A review. Aquacult. Int. 23, 1505–1524. https://doi.org/10.1007/s10499-015-9900-0 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Paredes, E. Exploring the evolution of marine invertebrate cryopreservation—Landmarks, state of the art and future lines of research. Cryobiology 71(2), 198–209. https://doi.org/10.1016/j.cryobiol.2015.08.011 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Paredes, E., Heres, P., Anjos, C., & Cabrita, E. Cryopreservation of marine invertebrates: From sperm to complex larval stages. in Cryopreservation and Freeze-Drying Protocol, Methods in Molecular Biology (eds Wolkers, W., Oldenhof, H.) 2180. https://doi.org/10.1007/978-1-0716-0783-1_18 (Humana, 2021).

  • 28.

    Adams, S.L., Smith, J.F., Tervit, H.R., McGowan, L.T., Roberts, R.D., Achim, R.J., King, N.G., Gale, S.L., & Webb S.C. Cryopreservation of molluscan sperm: oyster (Crassostrea gigas, Thunberg), mussel (Perna canaliculus) and abalone (Haliotis iris). in Cryopreservation in Aquatic Species (eds Tiersch, T.R., Green C.C.), 2nd edn 562–573 (Louisiana World Aquaculture Society, 2011).

  • 29.

    Adams, S.L., Tervit, H.R., Salinas-Flores, L., Smith, J.F., McGowan, L.T., Roberts, R.D., Janke, A., King, N., Webb, S.C., & Gale, S.L. Cryopreservation of Pacific oyster oocytes. in Cryopreservation in Aquatic Species (eds. Tiersch, T.R., Green C.C.), 2nd edn. 616–623 (World Aquaculture Society, 2011).

  • 30.

    Liu, Y., Li, X., Xu, T., Robinson, N. & Qin, J. Greenlip abalone (Haliotis laevigata Donovan, 1808) sperm cryopreservation using a programmable freezing technique and testing the addition of amino acid and vitamin. Aquac. Res. 47, 1499–1510. https://doi.org/10.1111/are.12609 (2016).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Paredes, E. et al. Cryopreservation of GreenshellTM mussel (Perna canaliculus) trochophore larvae. Cryobiology 65(3), 256–262 (2012).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Paredes, E., Bellas, J. & Adams, S. L. Comparative cryopreservation study of trochophore larvae from two species of bivalves: Pacific oyster (Crassostrea gigas) and Blue mussel (Mytilus galloprovincialis). Cryobiology 67(3), 274–279 (2013).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Renard, P. Cooling and freezing tolerances in embryos of the Pacific oyster, Crassostrea gigas: Methanol and sucrose effects. Aquaculture 92, 43–57 (1991).

    Article 

    Google Scholar 

  • 34.

    Campos, S., Troncoso, J. & Paredes, E. Major challenges in cryopreservation of sea urchin eggs. Cryobiology 98, 1–4. https://doi.org/10.1016/j.cryobiol.2020.11.008 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Labbé, C. et al. Cryopreservation of Pacific oyster (Crassostrea gigas) larvae: Revisiting the practical limitations and scaling up the procedure for application to hatchery. Aquaculture 488, 227–234 (2018).

    Article 

    Google Scholar 

  • 36.

    Zhang, T. T. Cryopreservation of gametes and embryos of aquatic species. In Life in the Frozen State (eds Fuller, B. J. et al.) 415–435 (CRC Press, 2004).

    Chapter 

    Google Scholar 

  • 37.

    Heres, P., Rodríguez-Riveiro, R., Troncoso, J. & Paredes, E. Toxicity tests of cryoprotecting agents for Mytilus galloprovincialis (Lamark, 1819) early developmental stages. Criobiology. 86, 40–46. https://doi.org/10.1016/j.cryobiol.2019.01.001 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Rodríguez-Riveiro, R., Heres, P., Troncoso, J. & Paredes, E. Long term survival of cryopreserved mussel larvae (Mytilus galloprovinciallis). Aquaculture 512, 734326. https://doi.org/10.1016/j.aquaculture.2019.734326 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Adams, S. L. et al. Application of sperm cryopreservation in selective breeding of the Pacific oyster, Crassostrea gigas (Thunberg). Aquac. Res. 39(13), 1434–1442 (2008).

    Article 

    Google Scholar 

  • 40.

    Liu, Y. et al. Development of a programmable freezing technique on larval cryopreservation in Mytilus galloprovincialis. Aquaculture 516, 734554. https://doi.org/10.1016/j.aquaculture.2019.734554 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Liu, Y. & Li, X. Successful oocyte cryopreservation in the blue mussel Mytilus galloprovincialis. Aquaculture 438, 55–58. https://doi.org/10.1016/j.aquaculture.2015.01.002 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Toledo, J.D., Kurokura, H., & Kasahara, S. Preliminary studies on the cryopreservation of the blue mussel embryos. Nippon Suisan Gakkaishi 1661 (1989).

  • 43.

    Wang, H., Li, X., Wang, M., Clarke, S. & Gluis, M. The development of oocyte cryopreservation techniques in blue mussels Mytilus galloprovincialis. Fish Sci. 80, 1257–1267. https://doi.org/10.1007/s12562-014-0796-9 (2014).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Heres, P. et al. Development of a method to cryopreserve Greenshell musselTM (Perna canaliculus) veliger larvae. Cryobiology 96, 37–44 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Leibo, S. P. & Songsasen, N. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57(1), 303–326. https://doi.org/10.1016/S0093-691X(01)00673-2 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Godoy, L. et al. Combining biotechnology and environmental education for coral reef conservation—The Reefbank project. Cryobiology 91, 170. https://doi.org/10.1016/j.cryobiol.2019.10.099 (2019).

    Article 

    Google Scholar 

  • 47.

    Hagerdorn, M., Varga, Z, Walter, R.B., & Tiersch, T.R. Workshop report: Cryopreservation of aquatic biomedical models 86, 120–129. https://doi.org/10.1016/j.cryobiol.2018.10.264 (2019).

  • 48.

    Tiersch, T. R., Figiel, C. R. Jr. & Wayman, W. R. Cryopreservation of sperm of the endangered Razorback Sucker. Trans. Am. Fish. Soc. 127, 95–104 (1998).

    Article 

    Google Scholar 

  • 49.

    Tiersch, T. R. & Green, C. C. Cryopreservation in Aquatic Species, 2nd Edn (World Aquaculture Society, 2011).

    Google Scholar 

  • 50.

    Suneja, S. et al. Multi-technique approach to characterise the effects of cryopreservation on larval development of the Pacific oyster (Crassostrea gigas). NZJ. Mar. Freshwat. Res. 48(3), 335–349 (2014).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Suquet, M. et al. Survival, growth and reproduction of cryopreserved larvae from a marine invertebrate, the pacific oyster (Crassostrea gigas). PLoS ONE 9(4), e93486. https://doi.org/10.1371/journal.pone.0093486 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Suquet, M. et al. Setting tools for the early assessment of the quality of thawed Pacific oyster (Crassostrea gigas) D-larvae. Theriogenology 78, 462–467 (2012).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Redfearn, P., Chanley, P. & Chanley, M. Larval shell development of four species of New Zealand mussels: (Bivalvia, Mytilacea). N. Z. J. Mar. Freshw. Res. 20(2), 157–172. https://doi.org/10.1080/00288330.1986.9516140 (1986).

    Article 

    Google Scholar 

  • 54.

    Rusk, A. B. Larval Development, Larval Development of the New Zealand Mussel Perna canaliculus and Effects of Cryopreservation 16–90 (Auckland University of Technology, 2012).

    Google Scholar 

  • 55.

    Kostetsky, E. Y., Boroda, A. V. & Odintsova, N. A. Changes in the lipid composition of mussel (Mytilus trossulus) embryo cells during cryopreservation. Biophysics 53(4), 299–303 (2008).

    Article 

    Google Scholar 

  • 56.

    Renard, P., & Cochard J.C. Effect of various cryoprotectants on Pacific oyster Crassostrea gigas Thunberg, Manila clam Ruditapes philippinarum Reeve and king scallop Pecten maximus (L.) embryos: Influence of the biochemical and osmotic effects. Cryo-Letters 10, 169–180 (1989).

  • 57.

    Leung, L. K. P. Principles of biological cryopreservation. In Fish Evolution and Systematics: Evidence from Spermatozoa (ed. Jamieson, B. G. M.) 231–244 (Cambridge University Press, 1991).

    Google Scholar 

  • 58.

    Pagán, O. R., Rowlands, A. L. & Urban, K. R. Toxicity and behavioural effects of dimethylsulfoxide in planaria. Neurosci. Lett. 407, 274–278 (2006).

    Article 

    Google Scholar 

  • 59.

    Santos, N. C., Figueira-Coelho, J., Saldanha, C. & Martins-Silva, J. Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading. Cell Calcium 31, 183–188 (2002).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F. & Crowe, J. H. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324–331 (1987).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Hassan, Md., Qin, J. G. & Li, X. Sperm cryopreservation in oysters: A review of its current status and potential for future in aquaculture. Aquaculture 438, 24–32 (2015).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Paredes, E. & Bellas, J. Cryopreservation of sea urchin embryos (Paracentrotus lividus) applied to marine ecotoxicological studies. Cryobiology 59, 344–350 (2009).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Rudolph, A. S. & Crowe, J. H. Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline. Cryobiology 22(4), 367–377 (1985).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Solidoro, C., Pastres, R., Melaku-Canu, D., Pellizzato, M. & Rossi, R. Modelling the growth of Tapes philippinarum in Northern adriatic lagoons. Mar. Ecol. Prog. Ser. 199, 137–148 (2000).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Spencer, B.E., Edwards, D.B., & Millican, P.F. Cultivation of Manila Clam. 1–29 (Lab. Leafl., MAFF Direct. Fish. Res., 1991).

  • 66.

    Usero, J., Gonzales-Regalado, E. & Gracia, I. Trace metals in bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of southern Spain. Environ. Int. 23, 291–298 (1997).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Bayne, B. L., Holland, D. L., Moore, M. N. & Lowe, D. M. Further studies on the effects of stress in the adult on the eggs of Mytilus edulis. J. Mar. Biol. Assoc. U. K. 58, 825–841 (1978).

    Article 

    Google Scholar 

  • 68.

    Gosling, E. Reproduction, settlement and recruitment. in Bivalve Molluscs: Biology, Ecology and Culture (ed Gosling, E.). https://doi.org/10.1002/9780470995532.ch5 (Blackwell Publishing Ltd, 2003).

  • 69.

    Zardus, J.D., Etter, R.J., Chase, M.R., Rex, M.A., & Boyle, E.E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 15, 639–651. https://doi.org/10.1111/j.1365-294X.2005.02832 (2006).

  • 70.

    Rusk, A. B., Alfaro, A. C., Young, T., Watts, E. & Adams, S. L. Development stage of cryopreserved mussel (Perna canaliculus) larvae influences post-thaw impact on shell formation, organogenesis, neurogenesis, feeding ability and survival. Cryobiology 93, 121–132. https://doi.org/10.1016/j.cryobiol.2020.01.021 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Cirino, L. et al. Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology 98, 80–86. https://doi.org/10.1016/j.cryobiol.2020.12.004 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Odintsova, N. A., Ageenko, N. V., Kiselev, K. V. & Sanina, N. M. K. Analysis of marine hydrobiont lipid extracts as possible cryoprotective agents. Int. J. Refrig. 29, 387–395 (2006).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Katkov, I.I. Current frontiers in cryobiology. IntechOpen (2012).

  • 74.

    Mazur, P. & Schneider, U. Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys. 8, 259–285. https://doi.org/10.1007/BF02788516 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 75.

    Pedro, P.B., Yokoyama, E., Zhu, S.E., Yoshida, N., Valdez, D.M,Jr., Tanaka, M., Edashige, K., & Kasai, M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51, 235–246. https://doi.org/10.1262/jrd.16079. (2005).

  • 76.

    Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714. https://doi.org/10.1038/s41598-018-34035-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Acker, J.P. Biopreservation of cells and engineered tissues. in Tissue Engineering II. Basics of Tissue Engineering and Tissue Applications (eds. Lee, K., Kaplan, D.) Vol. 103, 157–187. https://doi.org/10.1007/b137204 (Adv Biochem Eng/Biotechnol, Springer, 2006).

  • 78.

    Erdag, G., Eroglu, A., Morgan, J. R. & Toner, M. Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology 44, 218–228 (2002).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Karlsson, J.O.M., & Toner, M. Cryopreservation. in Principles of Tissue Engineering (eds. Lanza, R.P., Langer, R., Vacanti, J.P.) 2nd edn. 293–307. https://doi.org/10.1016/B978-012436630-5/50028-3 (Academic Press, 2000).

  • 80.

    Karlsson, J. O. M. & Toner, M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials 17(3), 243–256. https://doi.org/10.1016/0142-9612(96)85562-1 (1996).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Lautner, L., Himmat, S., Acker, J. P. & Nagendran, J. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low-cost technique for ex vivo subnormothermic lung perfusion. Cryobiology 97, 93–100. https://doi.org/10.1016/j.cryobiol.2020.10.001 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 82.

    Marques, L. S. et al. Slow freezing versus vitrification for the cryopreservation of zebrafish (Danio rerio) ovarian tissue. Nat. Sci. Rep. 9, 15353 (2019).

    ADS 
    Article 

    Google Scholar 

  • 83.

    Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247(3 Pt 1), C125–C142. https://doi.org/10.1152/ajpcell.1984.247.3.C125 (1984).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 84.

    Mazur, P. Principles of cryobiology. in Life in the Frozen State (eds. Fuller, B.J., Lane, N., Benson E.E.) 3–66 (CRC Press, 2004).

  • 85.

    Klöckner, K., Rosenthal, H., & Willführ, J. Invertebrate bioassays with North Sea water samples. I. Structural effects on embryos and larvae of serpulids, oysters and sea urchins. Helgoländer Meeresunters 39, 1–19 (1985).

  • 86.

    Stebbing, A. R. D. et al. The role of bioassays in marine pollution monitoring, bioassay panel report. Rapports Process-verbaux Reunions Conseil Permanent Int. Pour I’Explor. Mer. 179, 322–332 (1980).

    Google Scholar 

  • 87.

    His, E., Seaman, M.N., & Beiras, R. A simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res. 31 (1997).

  • 88.

    Ventura, A., Sculz, S. & Dupont, S. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater. Sci. Rep. 6, 23728 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 89.

    IBM SPSS 15.0 Version Statistical Software. https://www.ibm.com/es-es/products/spss-statistics.

  • 90.

    Newman, M.C. Quantitative Methods in Aquatic Ecotoxicology. Advances in Trace Substances Research. (Lewis Publishers, 1995).

  • 91.

    Sokal, R.R., Rohlf, F.J. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edn. (Freeman, 1995).

  • 92.

    Hayes Jr, W.J. Dosage and other factors influencing toxicity. in Handbook of Pesticide Toxicology (eds. Hayes Jr, W.J., Laws Jr. E.R.) Vol. 1, 39–105 (Academic Press, 1991).

  • 93.

    Chen, J., Li, Q., Kong, L. & Zheng, X. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China. Zool. Scr. 40(3), 260–271 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan