in

Late Quaternary dynamics of Arctic biota from ancient environmental genomics

[adace-ad id="91168"]
  • 1.

    Binney, H. et al. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Bigelow, N. H. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, https://doi.org/10.1029/2002jd002558 (2003).

  • 4.

    Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).

    Article 

    Google Scholar 

  • 6.

    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).

    Article 

    Google Scholar 

  • 7.

    Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 0125 (2017).

    Article 

    Google Scholar 

  • 8.

    Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, https://doi.org/10.3390/quat4010006 (2021).

  • 10.

    Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Hughes, P. D., Gibbard, P. L. & Ehlers, J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci. Rev. 125, 171–198 (2013).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, https://doi.org/10.1029/2005jd006079 (2006).

  • 14.

    Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2020).

    Article 

    Google Scholar 

  • 15.

    Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Wesser, S. D. & Armbruster, W. S. Species distribution controls across a forest‐steppe transition: a causal model and experimental test. Ecol. Monogr. 61, 323–342 (1991).

    Article 

    Google Scholar 

  • 17.

    Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).

  • 18.

    Birks, H. H. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolimnol. 23, 7–19 (2000).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549–574 (2001).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Mann, D. H., Peteet, D. M., Reanier, R. E. & Kunz, M. L. Responses of an Arctic landscape to Lateglacial and early Holocene climatic changes: the importance of moisture. Quat. Sci. Rev. 21, 997–1021 (2002).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Ritchie, M. in Competition and Coexistence (eds Sommer, U. & Worm, B.) 109–131 (Springer, 2002).

  • 22.

    Signor, P. W., Lipps, J. H., Silver, L. & Schultz, P. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth vol. 190 (eds Silver, L. T. & Schultz, P. H.) 291–296 (1982).

  • 23.

    Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Librado, P. et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl Acad. Sci. USA 112, E6889–E6897 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Nikolskiy, P. A., Sulerzhitsky, L. D. & Pitulko, V. V. Last straw versus Blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quat. Sci. Rev. 30, 2309–2328 (2011).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Pavlov, P., Svendsen, J. I. & Indrelid, S. Human presence in the European Arctic nearly 40,000 years ago. Nature 413, 64–67 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Kuzmin, Y. V. & Keates, S. G. Siberia and neighboring regions in the Last Glacial Maximum: did people occupy northern Eurasia at that time? Archaeol. Anthropol. Sci. 10, 111–124 (2016).

    Article 

    Google Scholar 

  • 28.

    Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51–59 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Rogers, R. L. & Slatkin, M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 13, e1006601 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Yurtsev, B. A. The Pleistocene “Tundra-Steppe” and the productivity paradox: the landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4, 1550 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microb. 53, 2948–2952 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Alsos, I. G. et al. The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, https://doi.org/10.3390/plants9040432 (2020).

  • 42.

    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar 

  • 43.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article 

    Google Scholar 

  • 44.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • 45.

    Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3– to 105-year time resolution. J. Geophys. Res. Oceans 102, 26455–26470 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2017).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. Oceans 102, 26397–26410 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Fuhrer, K., Neftel, A., Anklin, M. & Maggi, V. Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from summit, Central Greenland. Atmos. Environ. A 27, 1873–1880 (1993).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Oceans 102, 26345–26366 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Alley, R. B. et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529 (1993).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Holden, P. B. et al. PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate. Geosci. Model Dev. 12, 5137–5155 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (Laboratory of Archaeology at the University of British Columbia, and the Canadian Museum of History, accessed 6 February 2020).

  • 55.

    Vermeersch, P. M. Radiocarbon Palaeolithic Europe database: a regularly updated dataset of the radiometric data regarding the Palaeolithic of Europe, Siberia included. Data Brief 31, 105793 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 57.

    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).

    Article 

    Google Scholar 

  • 58.

    Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Preprint at https://doi.org/10.1101/2020.12.19.423614 (2020).

  • 59.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 60.

    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Wang, Y. et al. Supporting Data for: Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Metagenomics https://dataverse.no/privateurl.xhtml?token=86979109-5605-43b5-b3fb-f470d85b114c (2021).

  • 62.

    Theodoridis, S. et al. Climate and genetic diversity change in mammals during the Late Quaternary. Preprint at https://doi.org/10.1101/2021.03.05.433883 (2021).


  • Source: Ecology - nature.com

    Divergent abiotic spectral pathways unravel pathogen stress signals across species

    How diet affects tumors