in

Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction

[adace-ad id="91168"]
  • 1.

    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Lürling, M., Mendes e Mello, M., van Oosterhout, F., de Senerpont Domis, L. & Marinho, M. M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 9, 1851 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Low-Décarie, E., Fussmann, G. F. & Bell, G. Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 223–232 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113, E6325–E6334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Sun, Y. D. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end Permian extinction in southeastern Gondwana. Geology 49, https://doi.org/10.1130/G48795.1 (2021).

  • 8.

    Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48, 288–292 (2020).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bull. 108, 195–207 (1996).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    McLoughlin, S. et al. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357 (2020).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 75, 29–57 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Mays, C., Vajda, V. & McLoughlin, S. Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications. Earth-Sci. Rev. 212, 103382 (2021).

    CAS 
    Article 

    Google Scholar 

  • 20.

    McLoughlin, S. et al. Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976 (2021).

    Article 

    Google Scholar 

  • 21.

    Huber, J. K. A postglacial pollen and nonsiliceous algae record from Gegoka Lake, Lake County, Minnesota. J. Paleolimnol. 16, 23–35 (1996).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Woodward, C. A. & Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. J. Paleolimnol. 34, 481–501 (2005).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Pacton, M., Gorin, G. & Fiet, N. Occurrence of photosynthetic microbial mats in a Lower Cretaceous black shale (central Italy): a shallow-water deposit. Facies 55, 401–419 (2009).

    Article 

    Google Scholar 

  • 24.

    Pacton, M., Gorin, G. E. & Vasconcelos, C. Amorphous organic matter—Experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253–267 (2011).

    Article 

    Google Scholar 

  • 25.

    Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman & Hall, 1995).

  • 26.

    Retallack, G. J. Earliest Triassic claystone breccias and soil-erosion crisis. J. Sediment. Res. 75, 679–695 (2005).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Retallack, G. J. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin. Aust. GSA Bull. 111, 52–70 (1999).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Stevenson, R. J. & Smol, J. P. In Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D., Sheath, R. G. & Kociolek, P.) Ch. 21, 921–962 (Academic Press, 2015).

  • 31.

    Lindström, S., Bjerager, M., Alsen, P., Sanei, H. & Bojesen-Koefoed, J. The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geol. Mag. 157, 1547–1567 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 32.

    de Leeuw, J. W., Versteegh, G. J. M. & van Bergen, P. F. in Plants and Climate Change, Plant Ecology (eds Rozema, J., Aerts, R. & Cornelissen, H.) Vol. 182, 209–233 (Springer, 2006).

  • 33.

    Baudelet, P.-H., Ricochon, G., Linder, M. & Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res 25, 333–371 (2017).

    Article 

    Google Scholar 

  • 34.

    Graham, L. E. & Gray, J. In Plants Invade the Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 140–158 (Columbia University Press, 2001).

  • 35.

    Demura, M., Ioki, M., Kawachi, M., Nakajima, N. & Watanabe, M. M. Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J. Appl. Phycol. 26, 49–53 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Del Cortona, A. et al. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117, 2551–2559 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Wheeler, A., Van de Wetering, N., Esterle, J. S. & Götz, A. E. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29, 439–452 (2020).

    Article 

    Google Scholar 

  • 38.

    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).

    Article 

    Google Scholar 

  • 39.

    Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).

    ADS 
    Article 

    Google Scholar 

  • 40.

    von Alvensleben, N., Magnusson, M. & Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 28, 861–876 (2016).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Chu, D. et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeog. Palaeoclimatol. Palaeoecol. 474, 214–231 (2017).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Guo, W. et al. Secular variations of ichnofossils from the terrestrial Late Permian–Middle Triassic succession at the Shichuanhe section in Shaanxi Province, North China. Glob. Planet. Change 181, 102978 (2019).

    Article 

    Google Scholar 

  • 43.

    Lee, J. Y. et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) 195 pp. (Cambridge University Press, 2021).

  • 44.

    de Jersey, N. J. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geol. Surv. Qld. Publ. 374, 1–39 (1979).

    Google Scholar 

  • 45.

    Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).

    Article 

    Google Scholar 

  • 46.

    Grebe, H. Permian plant microfossils from the Newcastle Coal Measures/Narrabeen Group Boundary, Lake Munmorah, New South Wales. Rec. Geol. Surv. NSW 12, 125–136 (1970).

    Google Scholar 

  • 47.

    Mishra, S. et al. A new acritarch spike of Leiosphaeridia dessicata comb. nov. emend. from the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its origin and palaeoecological significance. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110274 (2021).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Kershaw, S. et al. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Schneebeli-Hermann, E. et al. Palynofacies analysis of the Permian–Triassic transition in the Amb section (Salt Range, Pakistan): implications for the anoxia on the South Tethyan Margin. J. Asian Earth Sci. 60, 225–234 (2012).

    ADS 
    Article 

    Google Scholar 

  • 51.

    van Soelen, E. E. & Kürschner, W. M. Late Permian to Early Triassic changes in acritarch assemblages and morphology in the Boreal Arctic: new data from the Finnmark Platform. Palaeogeog. Palaeoclimatol. Palaeoecol. 505, 120–127 (2018).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Spina, A., Cirilli, S., Utting, J. & Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 218, 3–14 (2015).

    Article 

    Google Scholar 

  • 53.

    Thomas, B. M. et al. Unique marine Permian‐Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51, 423–430 (2004).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Schneebeli-Hermann, E. & Bucher, H. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology 39, 1–18 (2015).

    Article 

    Google Scholar 

  • 55.

    Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).

    ADS 
    Article 

    Google Scholar 

  • 57.

    van Soelen, E. E., Twitchett, R. J. & Kürschner, W. M. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate 14, 441–453 (2018).

    Google Scholar 

  • 58.

    Kaiho, K. et al. Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon 2, e00137 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeog. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H. & Mathiesen, A. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev. Palaeobot. Palynol. 244, 65–95 (2017).

    Article 

    Google Scholar 

  • 61.

    Garel, S. et al. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeog. Palaeoclimatol. Palaeoecol. 376, 184–199 (2013).

    ADS 
    Article 

    Google Scholar 

  • 62.

    van de Schootbrugge, B. & Gollner, S. In Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers (eds Bush, A. M., Pruss, S. B. & Payne, J. L.) 19, 87–114 (The Paleontological Society, 2013).

  • 63.

    Mata, S. A. & Bottjer, D. J. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10, 3–24 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Peterffy, O., Calner, M. & Vajda, V. Early Jurassic microbial mats—a potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeog. Palaeoclimatol. Palaeoecol. 464, 76–85 (2016).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 3636, 862–866 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Vajda, V., Ocampo, A., Ferrow, E. & Bender Koch, C. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact—evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 27, 1079–1088 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K.-U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R. & McKee, M. L. No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 72.

    Strother, P. K. & Wellman, C. H. The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago. J. Geol. Soc. 178, jgs2020–jgs2133 (2021).

    Article 

    Google Scholar 

  • 73.

    Sepkoski, J. J., Bambach, R. K. & Droser, M. L. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.) 298–312 (Springer-Verlag, 1991).

  • 74.

    Tyson, R. V. Calibration of hydrogen indices with microscopy: a review, reanalysis and new results using the fluorescence scale. Org. Geochem. 37, 45–63 (2006).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Benninghoff, W. S. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et. Spores 4, 332–333 (1962).

    Google Scholar 

  • 76.

    Maher, L. J. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32, 153–191 (1981).

    Article 

    Google Scholar 

  • 77.

    Simpson, M. G. Plant Systematics (Academic Press, 2019).

  • 78.

    Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49, 298–302 (1963).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).

    Article 

    Google Scholar 

  • 80.

    Combaz, A. Les palynofaciès. Rev. Micropaléontol. 7, 205–218 (1964).

    Google Scholar 

  • 81.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

    Google Scholar 

  • 82.

    Wei, W. & Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 287, 341–366 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 83.

    Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Blakey, R. C. Global paleogeography and tectonics in deep time. https://deeptimemaps.com/global-series-details/. Accessed 16 June 2020 (2016).

  • 85.

    Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 86.

    Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Res. 28, 432–450 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 87.

    Vecoli, M. Fossil microphytoplankton dynamics across the Ordovician–Silurian boundary. Rev. Palaeobot. Palynol. 148, 91–107 (2008).

    Article 

    Google Scholar 

  • 88.

    Xie, S. et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet. Sci. Lett. 460, 180–191 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 89.

    Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–970 (1995).

    ADS 
    Article 

    Google Scholar 

  • 90.

    Richoz, S. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662–667 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 91.

    Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40, 531–534 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 92.

    van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeog. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).

    ADS 
    Article 

    Google Scholar 

  • 93.

    Slater, S. M., Twitchett, R. J., Danise, S. & Vajda, V. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 94.

    Polgári, M. et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeog. Palaeoclimatol. Palaeoecol. 459, 99–120 (2016).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 96.

    Kashiyama, Y. et al. Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: nitrogen and carbon isotopic evidence from sedimentary porphyrin. Org. Geochem. 39, 532–549 (2008).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Jarvis, I. et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretac. Res 9, 3–103 (1988).

    Article 

    Google Scholar 

  • 98.

    Layeb, M., Ben Fadhel, M., Layeb-Tounsi, Y. & Ben Youssef, M. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab. J. Geosci. 7, 3349–3363 (2014).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Pearce, M. A., Jarvis, I. & Tocher, B. A. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeog. Palaeoclimatol. Palaeoecol. 280, 207–234 (2009).

    ADS 
    Article 

    Google Scholar 

  • 100.

    Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17, 1051 (2002).

    ADS 
    Article 

    Google Scholar 

  • 101.

    Dodsworth, P., Eldrett, J. S. & Hart, M. B. Cretaceous Oceanic Anoxic Event 2 in eastern England: further palynological and geochemical data from Melton Ross. figshare https://doi.org/10.6084/m9.figshare.c.4987205.v3 (2020).

  • 102.

    Schwab, K. W., Bayliss, G. S., Smith, M. A. & Yoder, N. B. Mushroom and broccoli-head shaped algal fragments from the Eagle Ford Shale of south Texas and Coahuila, Mexico. Search and Discovery 70134 (2013).

  • 103.

    Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Scasso, R. A. et al. A high-resolution record of environmental changes from a Cretaceous-Paleogene section of Seymour Island. Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol. 555, 109844 (2020).

    ADS 
    Article 

    Google Scholar 

  • 105.

    Sosa-Montes de Oca, C. et al. Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110310 (2021).

    ADS 
    Article 

    Google Scholar 

  • 106.

    Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1222 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Junium, C. K., Dickson, A. J. & Uveges, B. T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 3186 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 108.

    Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Kender, S. et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 353–354, 108–120 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 110.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 111.

    Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Tot. Environ. 409, 1739–1745 (2011).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Concrete’s role in reducing building and pavement emissions

    MIT appoints members of new faculty committee to drive climate action plan