in

Mayetiola destructor (Diptera: Cecidmyiidae) host preference and survival on small grains with respect to leaf reflectance and phytohormone concentrations

[adace-ad id="91168"]
  • 1.

    Wiseman, B. R. Plant-resistance to insects in integrated pest-management. Plant Dis. 78, 927–932. https://doi.org/10.1094/pd-78-0927 (1994).

    Article  Google Scholar 

  • 2.

    Painter, R. H. Insect resistance in crop plants. Soil Sci. 72 (1951).

  • 3.

    Orr, D. B. & Boethel, D. J. Influence of plant antibiosis through four trophic levels. Oecologia 70, 242–249. https://doi.org/10.1007/BF00379247 (1986).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Smith, C. M. & Clement, S. L. Molecular Bases of Plant Resistance to Arthropods. Annu. Rev. Entomol. 57, 309–328. https://doi.org/10.1146/annurev-ento-120710-100642 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Radcliffe, R. H. in Radcliffe’s IPM world textbook Vol. https://ipmworld.umn.edu/ratcliffe-hessian-fly (eds Radcliffe E.B. & Hutchison W.D.) (University of Minnesota, 1997).

  • 6.

    Kosma, D. K., Nemacheck, J. A., Jenks, M. A. & Williams, C. E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J 63, 31–43 (2010).

    CAS  PubMed  Google Scholar 

  • 7.

    Smiley, R. W., Gourlie, J. A., Whittaker, R. G., Easley, S. A. & Kidwell, K. K. Economic impact of Hessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses with Fusarium crown rot and lesion nematode. J Econ Entomol 97, 397–408 (2004).

    Article  Google Scholar 

  • 8.

    Harris, M. O., Sandanayaka, M. & Griffin, A. Oviposition preferences of the Hessian fly and their consequences for the survival and reproductive potential of offspring. Ecol. Entomol. 26, 473–486. https://doi.org/10.1046/j.1365-2311.2001.00344.x (2001).

    Article  Google Scholar 

  • 9.

    Ganehiarachchi, G. A. S. M., Anderson, K. M., Harmon, J. & Harris, M. O. Why oviposit there? Fitness consequences of a gall midge choosing the plant’s youngest leaf. Environ Entomol 42, 123–130 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Kanno, H. & Harris, M. O. Physical features of grass leaves influence the placement of eggs within the plant by the Hessian fly. Entomol. Exp. Appl. 96, 69–80. https://doi.org/10.1046/j.1570-7458.2000.00680.x (2000).

    Article  Google Scholar 

  • 11.

    Harris, M. O. & Rose, S. Chemical, color, and tactile cues influencing oviposition behavior of the Hessian fly (Diptera, Cecidomyiidae). Environ. Entomol. 19, 303–308. https://doi.org/10.1093/ee/19.2.303 (1990).

    Article  Google Scholar 

  • 12.

    Kanno, H. & Harris, M. O. Leaf physical and chemical features influence selection of plant genotypes by hessian fly. J. Chem. Ecol. 26, 2335–2354 (2000).

    CAS  Article  Google Scholar 

  • 13.

    Cervantes, D. E., Eigenbrode, S. D., Ding, H. J. & Bosque-Perez, N. A. Oviposition responses by Hessian fly, Mayetiola destructor, to wheats varying in surface waxes. J. Chem. Ecol. 28, 193–210 (2002).

    CAS  Article  Google Scholar 

  • 14.

    Morris, B. D., Foster, S. P. & Harris, M. O. Identification of 1-octacosanal and 6-methoxy-2-benzoxazolinone from wheat as ovipositional stimulants for Hessian fly, Mayetiola destructor. J. Chem. Ecol. 26, 859–873 (2000).

    CAS  Article  Google Scholar 

  • 15.

    Harris, M. O., Rose, S. & Malsch, P. The role of vision in the host plant-finding behavior of the Hessian fly. Physiol. Entomol. 18, 31–42. https://doi.org/10.1111/j.1365-3032.1993.tb00446.x (1993).

    Article  Google Scholar 

  • 16.

    Rohfritsch, O. A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav) Trin. Bull. Soc. Bot. France Lett. Bot. 139, 45–59. https://doi.org/10.1080/01811797.1992.10824942 (1992).

    Article  Google Scholar 

  • 17.

    Schmid, R. B., Knutson, A., Giles, K. L. & McCornack, B. P. Hessian fly (Diptera: Cecidomyiidae) biology and management in wheat. J. Integr. Pest Manag. 9, 12. https://doi.org/10.1093/jipm/pmy008 (2018).

    Article  Google Scholar 

  • 18.

    Gagné, R. J. & Hatchett, J. H. Instars of the Hessian Fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 82, 73–79. https://doi.org/10.1093/aesa/82.1.73 (1989).

    Article  Google Scholar 

  • 19.

    Lidell, M. C. & Schuster, M. F. Distribution of the Hessian fly and its control in Texas. Southwestern Entomologist 15, 133–145 (1990).

    Google Scholar 

  • 20.

    Morgan, G., Sansone, C. & Knutson, A. Hessian fly in Texas wheat. E-350 (Texas A&M, 2005).

  • 21.

    Flanders, K. L., Reisig, D. D., Buntin, G. D., Herbert, J. D. A. & Johnson, D. W. Biology and management of Hessian fly in the Southeast. ANR1069 (Alabama Cooperative Extension System, 2013).

  • 22.

    Wellso, S. G. Aestivation and Phenology of the Hessian Fly (Diptera: Cecidomyiidae) in Indiana. Environ. Entomol. 20, 795–801. https://doi.org/10.1093/ee/20.3.795 (1991).

    Article  Google Scholar 

  • 23.

    Boyd, M. L. & Bailey, W. C. Hessian fly management on wheat. G7180 (Missouri Extension, University of Missouri-Columbia, 2000).

  • 24.

    Ando, K. et al. Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One 13, e0191305/0191301-e0191305/0191325. https://doi.org/10.1371/journal.pone.0191305 (2018).

  • 25.

    Anderson, K. M. & Harris, M. O. Susceptibility of North Dakota Hessian Fly (Diptera: Cecidomyiidae) to 31 H Genes Mediating Wheat Resistance. J. Econ. Entomol. 112, 2398–2406 (2019).

    Article  Google Scholar 

  • 26.

    Sardesai, N., Nemacheck, J. A., Subramanyam, S. & Williams, C. E. Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet. 111, 1167–1173 (2005).

    CAS  Article  Google Scholar 

  • 27.

    Zhu, L., Liu, X. & Chen, M.-S. Differential accumulation of phytohormones in wheat seedlings attacked by avirulent and virulent Hessian fly (Diptera: Cecidomyiidae) larvae. J. Econ. Entomol. 103, 178–185 (2010).

    CAS  Article  Google Scholar 

  • 28.

    Mithöfer, A. & Boland, W. Recognition of Herbivory-Associated Molecular Patterns. Plant Physiol. 146, 825. https://doi.org/10.1104/pp.107.113118 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Stuart, J. J., Chen, M.-S., Shukle, R. & Harris, M. O. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopathol. 50, 339–357 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Liu, X. et al. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194 (2007).

    CAS  Article  Google Scholar 

  • 31.

    Subramanyam, S. et al. Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170, 90–103. https://doi.org/10.1016/j.plantsci.2005.08.006 (2006).

    CAS  Article  Google Scholar 

  • 32.

    Wu, J. et al. Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible and incompatible interactions. J. Chem. Ecol. 34, 1005–1012 (2008).

    CAS  Article  Google Scholar 

  • 33.

    Giovanini, M. P. et al. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8, 69–82 (2007).

    CAS  Article  Google Scholar 

  • 34.

    Liu, X. et al. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol. 152, 985. https://doi.org/10.1104/pp.109.150656 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488. https://doi.org/10.1007/s11103-008-9435-0 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Denancé, N., Sánchez-Vallet, A., Goffner, D. & Molina, A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4. https://doi.org/10.3389/fpls.2013.00155 (2013)

  • 37.

    Dinh, S. T., Baldwin, I. T. & Galis, I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuate plants. Plant Physiol. 162, 2106–2124 (2013).

    CAS  Article  Google Scholar 

  • 38.

    War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant signaling & behavior 6, 1787–1792. https://doi.org/10.4161/psb.6.11.17685 (2011).

  • 39.

    Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740. https://doi.org/10.1007/s11103-016-0481-8 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Lee, A. et al. Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem. Biophys. Res. Commun. 318, 734–738. https://doi.org/10.1016/j.bbrc.2004.04.095 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Kunkel, B. N. & Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331. https://doi.org/10.1016/S1369-5266(02)00275-3 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Farmer, E. E., Alméras, E. & Krishnamurthy, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372–378. https://doi.org/10.1016/S1369-5266(03)00045-1 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472. https://doi.org/10.1016/j.pbi.2007.08.008 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Felton, G. W., Bi, J. L., Summers, C. B., Mueller, A. J. & Duffey, S. S. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 20, 651–666. https://doi.org/10.1007/BF02059605 (1994).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Audenaert, K., De Meyer, G. B. & Höfte, M. M. Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms. Plant Physiol. 128, 491. https://doi.org/10.1104/pp.010605 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Mohr, P. G. & Cahill, D. M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Functional & Integrative Genomics 7, 181–191, https://doi.org/10.1007/s10142-006-0041-4 (2007).

  • 47.

    Harris, M. O., Dando, J. L., Griffin, W. & Madie, C. Susceptibility of cereal and non-cereal grasses to attack by Hessian fly (Mayetiola destructor (Say)). N. Zeal. J. Crop Hortic. Scie.ce 24, 229–238. https://doi.org/10.1080/01140671.1996.9513957 (1996).

    Article  Google Scholar 

  • 48.

    Gitelson, A. A. & Merzlyak, M. N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148, 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7 (1996).

    CAS  Article  Google Scholar 

  • 49.

    Foster, S. P. & Harris, M. O. Foliar chemicals of wheat and related grasses influencing oviposition by Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). J Chem Ecol 18, 1965–1980 (1992).

    CAS  Article  Google Scholar 

  • 50.

    Gagne, R. J., Hatchett, J. H., Lhaloui, S. & El Bouhssini, M. Hessian fly and barley stem gall midge, two different species of mayetiola (Diptera: Cecidomyiidae) in Morocco. Ann. Entomol. Soc. Am. 84, 436–443. https://doi.org/10.1093/aesa/84.4.436 (1991).

    Article  Google Scholar 

  • 51.

    Cherif, A., Kinoshita, N., Taylor, D. & Mediouni Ben Jemâa, J. Molecular characterization and phylogenetic comparisons of three Mayetiola species (Diptera: Cecidomyiidae) infesting cereals in Tunisia. Applied Entomology and Zoology 52, 543–551, https://doi.org/10.1007/s13355-017-0507-y (2017).

  • 52.

    Gould, F. Simulation models for predicting durability of insect-resistant germ plasm: hessian fly (Diptera: Cecidomyiidae)-resistant Winter Wheat. Environ. Entomol. 15, 11–23. https://doi.org/10.1093/ee/15.1.11 (1986).

    Article  Google Scholar 

  • 53.

    Chen, M.-S., Liu, X., Wang, H. & El-Bouhssini, M. Hessian fly (Diptera: Cecidomyiidae) interactions with barley, rice, and wheat seedlings. J Econ Entomol 102, 1663–1672 (2009).

    Article  Google Scholar 

  • 54.

    Ratcliffe, R. H., Safranski, G. G., Patterson, F. L., Ohm, H. W. & Taylor, P. L. Biotype status of Hessian fly (Diptera, Cecidomyiidae) populations from the eastern United-States and their response to 14 Hessian fly resistance genes. J. Econ. Entomol. 87, 1113–1121. https://doi.org/10.1093/jee/87.4.1113 (1994).

    Article  Google Scholar 

  • 55.

    Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985. https://doi.org/10.1111/j.1365-2664.2012.02173.x (2012).

    Article  Google Scholar 

  • 56.

    Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 1–20 (2012).

    Article  Google Scholar 

  • 57.

    Williams, C. E., Collier, C. C., Nemacheck, J. A., Liang, C. Z. & Cambron, S. E. A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 28, 1411–1428. https://doi.org/10.1023/a:1016200619766 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Herrera-Vasquez, A., Salinas, P. & Holuigue, L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression (vol 6, 171, 2015). Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.00964 (2017).

  • 59.

    Hatchett, J. H., Kreitner, G. L. & Elzinga, R. J. Larval Mouthparts and Feeding Mechanism of the Hessian Fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 83, 1137–1147. https://doi.org/10.1093/aesa/83.6.1137 (1990).

    Article  Google Scholar 

  • 60.

    Schotzko, D. J. & Bosque-Perez, N. A. Relationship between Hessian fly infestation density and early seedling growth of resistant and susceptible wheat. J. Agric. Urban Entomol. 19, 95–107 (2002).

    Google Scholar 

  • 61.

    Ratcliffe, R. H. et al. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern, midwestern, and northwestern United States and virulence to resistance genes in wheat. J Econ. Entomol. 93, 1319–1328 (2000).

    CAS  Article  Google Scholar 

  • 62.

    Song, S., Gong, W., Zhu, B. & Huang, X. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogram. Remote Sens. 66, 672–682. https://doi.org/10.1016/j.isprsjprs.2011.05.002 (2011).

    ADS  Article  Google Scholar 

  • 63.

    Dechant, B., Cuntz, M., Vohland, M., Schulz, E. & Doktor, D. Estimation of photosynthesis traits from leaf reflectance spectra: correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 196, 279–292. https://doi.org/10.1016/j.rse.2017.05.019 (2017).

    ADS  Article  Google Scholar 

  • 64.

    Ollinger, S. V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 189, 375–394. https://doi.org/10.1111/j.1469-8137.2010.03536.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Almeida Trapp, M., De Souza, G. D., Rodrigues-Filho, E., Boland, W. & Mithöfer, A. Validated method for phytohormone quantification in plants. Frontiers in Plant Science 5, https://doi.org/10.3389/fpls.2014.00417 (2014).

  • 66.

    Davis, T. S., Bosque-Pérez, N. A., Popova, I. & Eigenbrode, S. D. Evidence for additive effects of virus infection and water availability on phytohormone induction in a staple crop. Frontiers in Ecology and Evolution 3, https://doi.org/10.3389/fevo.2015.00114 (2015).


  • Source: Ecology - nature.com

    King Climate Action Initiative announces new research to test and scale climate solutions

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)