in

Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos

[adace-ad id="91168"]
  • 1.

    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 9, 9994 (2018).

    Article 

    Google Scholar 

  • 3.

    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 364, 2027–2045 (2009).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Fadare, O. O. & Okoffo, E. D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    United Nations Environment Assembly of the United Nations Environmental Programme. Ad hoc Open-Ended Expert Group on Marine Litter and Microplastics. Fourth meeting. Report No. UNEP/AHEG/4/7. (United Nations, 2020).

  • 6.

    Watson, R. A. et al. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6, 795 (2015).

    Article 

    Google Scholar 

  • 7.

    Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998 (2009).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 768 (2016).

    Google Scholar 

  • 9.

    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1240 (2017).

    Article 

    Google Scholar 

  • 10.

    Walkinshaw, C., Lindeque, P. K., Thompson, R., Tolhurst, T. & Cole, M. Microplastics and seafood: Lower trophic organisms at highest risk of contamination. Ecotoxicol. Environ. Saf. 190, 110066 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lusher, A. In Marine Anthropogenic Litter (eds. Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).

  • 12.

    Collard, F. et al. Morphology of the filtration apparatus of three planktivorous fishes and relation with ingested anthropogenic particles. Mar. Pollut. Bull. 116, 182–191 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Espinoza, P. & Bertrand, A. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Prog. Oceanogr. 79, 215–227 (2008).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R. B. O., Lundeye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lindeque, P. K. et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 265, 114721 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).

    Article 

    Google Scholar 

  • 17.

    Mercogliano, R. et al. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.0c01209 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Wang, W., Gao, H., Jin, S., Li, R. & Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 173, 110–117 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Mathieu-Denoncourt, J., Wallace, S. J., de Solla, S. R. & Langlois, V. S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 219, 74–88 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 111, 10239–10244 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b05512 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Bouwmeester, H., Hollman, P. C. H. & Peters, R. J. B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932–8947 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Rochman, C. M. et al. Classify plastic waste as hazardous. Nature 494, 169–171 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Law, K. L. et al. Plastic accumulation in the North Atlantic subtropical gyre. Science 329, 1185–1188 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Ory, N. et al. Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Mar. Pollut. Bull. 127, 211–216 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Law, K. L. et al. Distribution of surface plastic debris in the Eastern Pacific Ocean from an 11-year data set. Environ. Sci. Technol. https://doi.org/10.1021/es4053076 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Kooi, M., van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Lusher, A. Microplastics in the marine environment: Distribution, interactions and effects. link.springer.com 245–307 (2015). https://doi.org/10.1007/978-3-319-16510-3_10.

  • 30.

    van Sebille, E. et al. Basin-scale sources and pathways of microplastic that ends up in the Galápagos Archipelago. Ocean Sci. 15, 1341–1349 (2019).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Jensen, J. L., Schjønning, P., Watts, C. W., Christensen, B. T. & Munkholm, L. J. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE 12, e0178039 (2017).

    Article 

    Google Scholar 

  • 32.

    Fischer, A. H., Jacobson, K. A., Rose, J. & Zellers, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008, (2008).

  • 33.

    Minitab 17 Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. www.minitab.com.

  • 34.

    ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).

    Google Scholar 

  • 35.

    Alfaro-Núñez, A. & Bermúdez, R. The scientific problem of plastic pollution: An ocean of reports with little standardization of procedures. Bionatura 3, 639–640 (2018).

  • 36.

    Thompson, R. C. et al. Lost at sea: Where is all the plastic?. Science 304, 838–838 (2004).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Galgani, F., Souplet, A. & Cadiou, Y. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol. Prog. Ser. 142, 225–234 (1996).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Long, M. et al. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ. Pollut. 228, 454–463 (2017).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Eriksen, M. et al. Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 68, 71–76 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Avio, C. G. et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198, 211–222 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    de Miranda, D. A. & de Carvalho-Souza, G. F. Are we eating plastic-ingesting fish?. Mar. Pollut. Bull. 103, 109–114 (2016).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Neves, D., Sobral, P., Ferreira, J. L. & Pereira, T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 101, 119–126 (2015).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. https://doi.org/10.1021/es404295e (2013).

    Article 

    Google Scholar 

  • 45.

    Cole, M. & Galloway, T. S. Ingestion of nanoplastics and microplastics by pacific oyster larvae. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b04099 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Chemists gain new insights into the behavior of water in an influenza virus channel

    Mutability of demographic noise in microbial range expansions