in

Mycorrhizal types influence island biogeography of plants

[adace-ad id="91168"]
  • 1.

    MacArthur, R. H. & Wilson, E. The theory of Island Biogeography. (Princeton University Press, 1967).

  • 2.

    Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Losos, J. B. & Ricklefs, R. E. The Theory Of Island Biogeography Revisited. (Princeton University Press, 2009).

  • 5.

    Onstein, R. E. et al. Frugivory-related traits promote speciation of tropical palms. Nat. Ecol. Evol. 1, 1903 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Bush, M. B. & Whittaker, R. J. Krakatau: colonization patterns and hierarchies. J. Biogeogr. 18, 341–356 (1991).

  • 7.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article 

    Google Scholar 

  • 8.

    Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Duchicela, J., Bever, J. D. & Schultz, P. A. Symbionts as filters of plant colonization of islands: tests of expected patterns and environmental consequences in the galapagos. Plants 9, 74 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228, 238–252 (2020).

  • 12.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic press, 2008).

  • 13.

    Oneto, D. L., Golan, J., Mazzino, A., Pringle, A. & Seminara, A. Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl Acad. Sci. USA 117, 5134–5143 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Roper, M., Pepper, R. E., Brenner, M. P. & Pringle, A. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc. Natl Acad. Sci. USA 105, 20583–20588 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems- a journey towards relevance? New Phytol. 157, 475–492 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    McCORMICK, M. K. et al. Limitations on orchid recruitment: not a simple picture. Mol. Ecol. 21, 1511–1523 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Selosse, M. A. et al. Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal. Behav. 5, 349–353 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Smith, G. R., Finlay, R. D., Stenlid, J., Vasaitis, R. & Menkis, A. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood‐decay basidiomycetes. New Phytol. 215, 747–755 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below‐ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    van der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 25.

    Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Pyšek, P. et al. Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere 10, e02937 (2019).

    Article 

    Google Scholar 

  • 27.

    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Steidinger, B. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).

    Article 

    Google Scholar 

  • 30.

    Cameron, D. D., Leake, J. R. & Read, D. J. Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytol. 171, 405–416 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Dearnaley, J. D. Further advances in orchid mycorrhizal research. Mycorrhiza 17, 475–486 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Davison, J. et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. 12, 2211–2224 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Koziol, L. & Bever, J. D. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J. Ecol. 107, 622–632 (2019).

    Article 

    Google Scholar 

  • 34.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. BioScience 68, 996–1006 (2018).

  • 36.

    Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Zotz, G. The systematic distribution of vascular epiphytes–a critical update. Bot. J. Linn. Soc. 171, 453–481 (2013).

    Article 

    Google Scholar 

  • 38.

    Zotz, G. Vascular epiphytes in the temperate zones–a review. Plant Ecol. 176, 173–183 (2005).

    Article 

    Google Scholar 

  • 39.

    Taylor, A., Weigelt, P., König, C., Zotz, G. & Kreft, H. Island disharmony revisited using orchids as a model group. New Phytol. 223, 597–606 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Razanajatovo, M. et al. Autofertility and self‐compatibility moderately benefit island colonization of plants. Glob. Ecol. Biogeogr. 28, 341–352 (2019).

    Article 

    Google Scholar 

  • 41.

    van Kleunen, M. et al. The Global Naturalized Alien Flora (Glo NAF) database. Ecology 100, e02542 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Pysek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).

    Article 

    Google Scholar 

  • 43.

    Weigelt, P., König, C. & Kreft, H. GIFT–A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).

    Article 

    Google Scholar 

  • 44.

    Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).

    Article 

    Google Scholar 

  • 45.

    Byng, J. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article 

    Google Scholar 

  • 46.

    Maherali, H. et al. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Gerdemann, J. Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397–418 (1968).

    Article 

    Google Scholar 

  • 49.

    Bueno, C. G., Gerz, M., Zobel, M. & Moora, M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29, 1–11 (2018).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115(2018).

  • 51.

    Vrålstad, T. Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol. 164, 7–10 (2004).

  • 52.

    Vrålstad, T., Fossheim, T. & Schumacher, T. Piceirhiza bicolorata–the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol. 145, 549–563 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Report No. 2331-1258, (US Geological Survey, 2011).

  • 55.

    Center for International Earth Science Information Network – CIESIN – Columbia University, U. N. F. a. A. P.-F., and Centro Internacional de Agricultura Tropical – CIAT. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). (2005).

  • 56.

    Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).

    Article 

    Google Scholar 

  • 57.

    Weigelt, P. & Kreft, H. Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).

    Article 

    Google Scholar 

  • 58.

    Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. Diversity regulation at macro‐scales: species richness on oceanic archipelagos. Glob. Ecol. Biogeogr. 24, 594–605 (2015).

    Article 

    Google Scholar 

  • 60.

    Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).

    Article 

    Google Scholar 

  • 61.

    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST. 27, 716–748 https://doi.org/10.1007/s11749-018-0599-x (2018).

    Article 

    Google Scholar 

  • 62.

    R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 63.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 64.

    Delavaux, C. et al. Mycorrhizal Types Influence Island Biogeography of Plants: associated data. Zenodo https://doi.org/10.5281/zenodo.5179626 (2021).


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community