in

Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia

[adace-ad id="91168"]
  • 1.

    Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 2-1–2-31 (2002).

    Google Scholar 

  • 2.

    Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).

    CAS 

    Google Scholar 

  • 3.

    Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. science 308, 67–71 (2005).

    CAS 

    Google Scholar 

  • 4.

    Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002402 (2005).

  • 5.

    Bristow, C. S., Hudson‐Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043486 (2010).

  • 6.

    Rizzolo, J. A. et al. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmos. Chem. Phys. 17, 2673–2687 (2017).

    CAS 

    Google Scholar 

  • 7.

    Micheels, A., Eronen, J. & Mosbrugger, V. The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 67, 193–204 (2009).

    Google Scholar 

  • 8.

    Lohmann, G., Butzin, M. & Bickert, T. Effect of vegetation on the Late Miocene ocean circulation. J. Mar. Sci. Eng. 3, 1311–1333 (2015).

    Google Scholar 

  • 9.

    Vinoj, V. et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 7, 308–313 (2014).

    CAS 

    Google Scholar 

  • 10.

    Dave, P., Bhushan, M. & Venkataraman, C. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep. 7, 1–12 (2017).

    CAS 

    Google Scholar 

  • 11.

    Besnard, G., de Casas, R., Christin, R. & Vargas, P.-A. P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 104, 143–160 (2009).

    CAS 

    Google Scholar 

  • 12.

    Désamoré, A. et al. Out of Africa: north‐westwards Pleistocene expansions of the heather Erica arborea. J. Biogeogr. 38, 164–176 (2011).

    Google Scholar 

  • 13.

    Denk, T., Güner, H. T. & Grimm, G. W. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol. 200, 211–228 (2014).

    Google Scholar 

  • 14.

    Mairal, M., Pokorny, L., Aldasoro, J. J., Alarcón, M. & Sanmartín, I. Ancient vicariance and climate‐driven extinction explain continental‐wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Mol. Ecol. 24, 1335–1354 (2015).

    CAS 

    Google Scholar 

  • 15.

    Douady, C. J. et al. The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc. Natl Acad. Sci. 100, 8325–8330 (2003).

    CAS 

    Google Scholar 

  • 16.

    Carranza, S., Arnold, E., Geniez, P., Roca, J. & Mateo, J. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phylogenet. Evol. 46, 1071–1094 (2008).

    CAS 

    Google Scholar 

  • 17.

    Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biol. Rev. 89, 215–231 (2014).

    Google Scholar 

  • 18.

    Gonçalves, D. V. et al. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol. Phylogenet. Evol. 118, 64–74 (2018).

    Google Scholar 

  • 19.

    Lado, S., Alves, P. C., Islam, M. Z., Brito, J. C. & Melo-Ferreira, J. The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity 123, 634–646 (2019).

    CAS 

    Google Scholar 

  • 20.

    Moutinho, A. F. et al. Evolutionary history of two cryptic species of northern African jerboas. BMC Evolut. Biol. 20, 1–16 (2020).

    Google Scholar 

  • 21.

    Solounias, N., Plavcan, J., Quade, J. & Witmer, L. in The Evolution of Neogene Terrestrial Ecosystems in Europe (eds Rook, L. et al.) Ch. 22, 436–453 (Cambridge University Press, 1999).

  • 22.

    Thomas, H. Les bovidae (Artiodactyla: Mammalia) du miocene du sous-continent indien, de la peninsule arabique et de l’afrique: Biostratigraphie, biogeographie et ecologie. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 251–299 (1984).

    Google Scholar 

  • 23.

    Bibi, F. Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).

  • 24.

    Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolut. Biol. 13, 166 (2013).

    Google Scholar 

  • 25.

    Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evolut. Anthropol. 21, 10–23 (2012).

    Google Scholar 

  • 26.

    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).

    Google Scholar 

  • 27.

    Vrba, E. S. On the connections between paleoclimate and evolution. In Paleoclimate and evolution, with emphasis on human origins. (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) p. 24–45 (Yale University Press, New Haven and Lopndon, 1995).

  • 28.

    Homke, S., Vergés, J., Garcés, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).

    CAS 

    Google Scholar 

  • 29.

    Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).

    Google Scholar 

  • 30.

    Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).

    Google Scholar 

  • 31.

    Mather, A., Stokes, M., Pirrie, D. & Hartley, R. Generation, transport and preservation of armoured mudballs in an ephemeral gully system. Geomorphology 100, 104–119 (2008).

    Google Scholar 

  • 32.

    Bachmann, G. H. & Wang, Y. Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: modern example from Guizhou Province, South China. J. Palaeogeogr. 3, 410–418 (2014).

    Google Scholar 

  • 33.

    Vicente, A., Expósito, M., Sanjuan, J. & Martín-Closas, C. Small sized charophyte gyrogonites in the Maastrichtian of Coll de Nargó, Eastern Pyrenees: an adaptation to temporary floodplain ponds. Cretac. Research 57, 443–456 (2016).

    Google Scholar 

  • 34.

    Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).

    Google Scholar 

  • 35.

    Emami, H. et al. Structure of the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights from sand box models. Geol. Soc. Lond. Spec. Publ. 330, 155–178 (2010).

  • 36.

    Ewing, S. A. et al. A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).

    CAS 

    Google Scholar 

  • 37.

    Rosenthal, E., Magaritz, M., Ronen, D. & Roded, R. Origin of nitrates in the Negev Desert, Israel. Appl. Geochem 2, 347–354 (1987).

    CAS 

    Google Scholar 

  • 38.

    Michalski, G., Böhlke, J. & Thiemens, M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 68, 4023–4038 (2004).

    CAS 

    Google Scholar 

  • 39.

    Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27–60 (2012).

    Google Scholar 

  • 40.

    Reynolds, R. L. et al. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Process. Landf. 32, 1811–1827 (2007).

    Google Scholar 

  • 41.

    Cosentino, D. et al. Refining the Mediterranean “Messinian gap” with high-precision U-Pb zircon geochronology, central and northern Italy. Geology 41, 323–326 (2013).

    CAS 

    Google Scholar 

  • 42.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, https://doi.org/10.1029/2004PA001071 (2005).

  • 43.

    Tan, N. et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth Planet. Sci. Lett. 472, 266–276 (2017).

    CAS 

    Google Scholar 

  • 44.

    Miller, K. G. et al. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).

    CAS 

    Google Scholar 

  • 45.

    Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun. 6, 1–10 (2015).

    Google Scholar 

  • 46.

    Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 1–14 (2016).

    Google Scholar 

  • 47.

    Manzi, V. et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–322 (2013).

    Google Scholar 

  • 48.

    Ryan, W. B. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009).

    Google Scholar 

  • 49.

    Roveri, M. et al. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).

    Google Scholar 

  • 50.

    Madof, A. S., Bertoni, C. & Lofi, J. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47, 171–174 (2019).

    CAS 

    Google Scholar 

  • 51.

    Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 290, 183–191 (2010).

    CAS 

    Google Scholar 

  • 52.

    van Baak, C. G. et al. Paratethys response to the Messinian salinity crisis. Earth Sci. Rev. 172, 193–223 (2017).

    Google Scholar 

  • 53.

    Böhme, M., Ilg, A. & Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 275, 393–401 (2008).

    Google Scholar 

  • 54.

    Schuster, M. et al. The age of the Sahara desert. Science 311, 821–821 (2006).

    CAS 

    Google Scholar 

  • 55.

    Böhme, M. et al. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 12, e0177347 (2017).

  • 56.

    Böhme, M., Van Baak, C. G., Prieto, J., Winklhofer, M. & Spassov, N. Late Miocene stratigraphy, palaeoclimate and evolution of the Sandanski Basin (Bulgaria) and the chronology of the Pikermian faunal changes. Glob. Planet. Change 170, 1–19 (2018).

    Google Scholar 

  • 57.

    Alijani, B. & Harman, J. R. Synoptic climatology of precipitation in Iran. Ann. Assoc. Am. Geogr. 75, 404–416 (1985).

    Google Scholar 

  • 58.

    Perșoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event—a hypothesis. Clim. Past 15, 781–793 (2019).

    Google Scholar 

  • 59.

    Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).

    CAS 

    Google Scholar 

  • 60.

    Zhongshi, Z., Wang, H., Guo, Z. & Jiang, D. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 317–331 (2007).

    Google Scholar 

  • 61.

    Najafi, M. S., Sarraf, B., Zarrin, A. & Rasouli, A. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environ. Monit. Assess. 189, 473 (2017).

    Google Scholar 

  • 62.

    van Baak, C. G., Stoica, M., Grothe, A., Aliyeva, E. & Krijgsman, W. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: the Pontian of Azerbaijan. Glob. Planet. Change 141, 63–81 (2016).

    Google Scholar 

  • 63.

    Naidina, O. D. & Richards, K. The Akchagylian stage (late Pliocene-early Pleistocene) in the North Caspian region: Pollen evidence for vegetation and climate change in the Urals-Emba region. Quat. Int. 540, 22–37 (2020).

    Google Scholar 

  • 64.

    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. 114, 12888–12893 (2017).

    CAS 

    Google Scholar 

  • 65.

    Colleoni, F., Cherchi, A., Masina, S. & Brierley, C. M. Impact of global SST gradients on the Mediterranean runoff changes across the Plio‐Pleistocene transition. Paleoceanography 30, 751–767 (2015).

    Google Scholar 

  • 66.

    Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1–13 (2018).

    CAS 

    Google Scholar 

  • 67.

    White, S. & Ravelo, A. Dampened El Niño in the early Pliocene warm period. Geophys. Res. Lett. 47, e2019GL085504 (2020).

    Google Scholar 

  • 68.

    Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).

    Google Scholar 

  • 69.

    Annamalai, H., Okajima, H. & Watanabe, M. Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Clim. 20, 3164–3189 (2007).

    Google Scholar 

  • 70.

    Nazemosadat, M., Samani, N., Barry, D. & Molaii Niko, M. ENSO forcing on climate change in Iran: precipitation analysis. Iran. J. Sci. Technol. Trans. B 30, 555–565 (2006).

    Google Scholar 

  • 71.

    Trauth, M. H. et al. High-and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).

    Google Scholar 

  • 72.

    Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. 114, 7331–7336 (2017).

    CAS 

    Google Scholar 

  • 73.

    Lebatard, A.-E. et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth Planet. Sci. Lett. 297, 57–70 (2010).

    CAS 

    Google Scholar 

  • 74.

    Tiedemann, R., et al. Proc. ODP, Sci. Results. 241–277.

  • 75.

    Hilgen, F. et al. Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco). Earth Planet. Sci. Lett. 182, 237–251 (2000).

    CAS 

    Google Scholar 

  • 76.

    Dupont, L. M. & Leroy, S. A. Steps Toward Drier Climatic Conditions in Northwestern Africa during the Upper Pliocene. Paleoclimate and Evolution with Emphasis on Human Origins 289–298 (Yale University Press, 1995)

  • 77.

    Darwin, C. & Bynum, W. F. The Origin of Species by Means of Natural Selection: Or, the Preservation of favored Races in the Struggle for Life (Penguin Harmondsworth, 2009).

  • 78.

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    CAS 

    Google Scholar 

  • 79.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. B. & Ogg, G. M. The Geologic Time Scale 2012. (Elsevier, 2012).

  • 80.

    Epp, T. et al. Vegetation canopy effects on total and dissolved Cl, Br, F and I concentrations in soil and their fate along the hydrological flow path. Sci. Total Environ. 712, 135473 (2020).

    CAS 

    Google Scholar 

  • 81.

    Dietze, E. & Dietze, M. Grain-size distribution unmixing using the R package EMMAgeo. E&G-Quat. Sci. J. 68, 29–46 (2019).

    Google Scholar 

  • 82.

    Andò, S. Gravimetric separation of heavy minerals in sediments and rocks. Minerals 10, 273 (2020).

    Google Scholar 

  • 83.

    Al-Juboury, A. I. & Al-Miamary, F. A. Geochemical variations in heavy minerals as provenance indications: application to the Tigris river sand, northern Iraq. J. Mediter. Earth Sci. 1, 33–45 (2009).

    Google Scholar 

  • 84.

    Garzanti, E. et al. The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth Sci. Rev. 162, 107–128 (2016).

    CAS 

    Google Scholar 

  • 85.

    Philip, G. Mineralogy of the Recent sediments of Tigris and Euphrates rivers and some of the older detrital deposits. J. Sediment. Res. 38, 35–44 (1968).

    Google Scholar 

  • 86.

    Skoček, V. & Saadallah, A. Grain-size distribution, carbonate content and heavy minerals in eolian sands, southern desert, Iraq. Sediment. Geol. 8, 29–46 (1972).

    Google Scholar 

  • 87.

    Popov, S., Antipov, M., Zastrozhnov, A., Kurina, E. & Pinchuk, T. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 18, 200–224 (2010).

    Google Scholar 

  • 88.

    Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40 (2019).

    Google Scholar 

  • 89.

    van Baak, C. G. et al. Messinian events in the Black Sea. Terra Nova 27, 433–441 (2015).

    Google Scholar 

  • 90.

    Green, T., Abdullayev, N., Hossack, J., Riley, G. & Roberts, A. M. Sedimentation and Subsidence in the South Caspian Basin, Azerbaijan vol. 312 (Geological Society, London, Special Publications, 2009) 241–260 (2009).

  • 91.

    Abdullayev, N. R., Riley, G. W. & Bowman, A. P. Regional controls on lacustrine sandstone reservoirs: the Pliocene of the South Caspian Basin. (2012).

  • 92.

    Trubikhin, V. Paleomagnetic data for the Pontian. Chronostratigraphie und Neostratotypen–Pontien. Chronostratigraphie und Neostratotypen, Zagreb–Beograd. 76–79 (1989).

  • 93.

    Van Baak, C. G. et al. A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Glob. Planet. Change 103, 119–134 (2013).

    Google Scholar 

  • 94.

    Davis, S. N., Fabryka-Martin, J. T. & Wolfsberg, L. E. Variations of bromide in potable ground water in the United States. Ground Water 42, 902–909 (2004).

    CAS 

    Google Scholar 

  • 95.

    Davis, S. N., Whittemore, D. O. & Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 36, 338–350 (1998).

    CAS 

    Google Scholar 

  • 96.

    Alcalá, F. J. & Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 359, 189–207 (2008).

    Google Scholar 

  • 97.

    Dickson, A. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water 166–187 (ORNL/CDIAC-74, U. S. Department of Energy, 1994).

  • 98.

    Tan, H., Ma, H., Li, B., Zhang, X. & Xiao, Y. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chin. Sci. Bull. 55, 3181–3188 (2010).

    CAS 

    Google Scholar 

  • 99.

    Turk, L., Davis, S. & Bingham, C. Hydrogeology of lacustrine sediments, Bonneville Salt Flats, Utah. Econ. Geol. 68, 65–78 (1973).

    CAS 

    Google Scholar 

  • 100.

    Sun, S. et al. Bromine content and Br/Cl molar ratio of halite in a core from Laos: implications for origin and environmental changes. Carbon. Evaporites 34, 1107–1115 (2019).

    CAS 

    Google Scholar 

  • 101.

    Fomba, K. W. et al. Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011). Atmos. Chem. Phys 14, 3917–3971 (2014).

    Google Scholar 

  • 102.

    Manö, S. & Andreae, M. O. Emission of methyl bromide from biomass burning. Science 263, 1255–1257 (1994).

    Google Scholar 

  • 103.

    Goni, I., Fellman, E. & Edmunds, W. Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos. Environ. 35, 4331–4339 (2001).

    CAS 

    Google Scholar 

  • 104.

    Horst, A. et al. Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim. Cosmochim. Acta 125, 186–195 (2014).

    CAS 

    Google Scholar 

  • 105.

    Helder, R. The absorption of labelled chloride and bromide ions by young intact barley plants. Acta Bot. Neerl. 13, 488–506 (1965).

    Google Scholar 

  • 106.

    Bowen, H. J. M. Environmental Chemistry of the Elements (Academic Press, 1979).

  • 107.

    Gerritse, R. G. & George, R. J. The role of soil organic matter in the geochemical cycling of chloride and bromide. J. Hydrol. 101, 83–95 (1988).

    CAS 

    Google Scholar 

  • 108.

    Wishkerman, A. et al. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ. Sci. Technol. 42, 6837–6842 (2008).

    CAS 

    Google Scholar 

  • 109.

    Delany, A. C., Pollock, W. H. & Shedlovsky, J. P. Tropospheric aerosol—relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265 (1973).

    CAS 

    Google Scholar 

  • 110.

    Pérez-Fodich, A. et al. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology 42, 251–254 (2014).

    Google Scholar 

  • 111.

    Reich, M. & Bao, H. M. Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity. Elements 14, 251–256 (2018).

    CAS 

    Google Scholar 

  • 112.

    Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).

    Google Scholar 

  • 113.

    Murphy, D. M. et al. The distribution of sea-salt aerosol in the global troposphere. Atmos. Chem. Phys. 19, https://doi.org/10.5194/acp-19-4093-2019 (2019).

  • 114.

    Walvoord, M. A. et al. A reservoir of nitrate beneath desert soils. Science 302, 1021–1024 (2003).

    CAS 

    Google Scholar 

  • 115.

    Graham, R. C., Hirmas, D. R., Wood, Y. A. & Amrhein, C. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36, 259–262 (2008).

    CAS 

    Google Scholar 

  • 116.

    Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).

    Google Scholar 

  • 117.

    Böhlke, J., Ericksen, G. & Revesz, K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. chemical. Chem. Geol. 136, 135–152 (1997).

    Google Scholar 

  • 118.

    Jin, Z., Zhu, Y., Li, X., Dong, Y. & An, Z. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China. Sci. Rep. 5, 14222 (2015).

    CAS 

    Google Scholar 

  • 119.

    Ericksen, G. E., Hosterman, J. W. & Amand, P. S. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, USA. Chem. Geol. 67, 85–102 (1988).

    CAS 

    Google Scholar 

  • 120.

    Qin, Y. et al. Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40, 623–626 (2012).

    CAS 

    Google Scholar 

  • 121.

    Lybrand, R. A. et al. Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth. Chemical. Geology 442, 174–186 (2016).

    CAS 

    Google Scholar 

  • 122.

    Wood, G. in American Association of Stratigraphic Palynologists Foundation vol. 1 29–50 (1996).

  • 123.

    Wallace, A. The Geographical Distribution of Animals Vol. I & II (Harper and Brothers, 1876).

  • 124.

    Wessel, P. & Luis, J. F. The GMT/MATLAB Toolbox. Geochem. Geophys. Geosyst. 18, 811–823 (2017).

    Google Scholar 

  • 125.

    Amante, C. & Eakins, B. ETOPO1 Global Relief Model Converted to PanMap Layer Format (NOAA-National Geophysical Data Center, 2009).

  • 126.

    Flint, A. L., Flint, L. E., Curtis, J. A. & Buesch, D. C. A preliminary water balance model for the Tigris and Euphrates river system. US Geological Survey, Water Budget Report (2011).


  • Source: Ecology - nature.com

    Ice melts on US-Sudan relations, providing new opportunities

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought