in

Neonicotinoids disrupt memory, circadian behaviour and sleep

[adace-ad id="91168"]
  • 1.

    Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).

    Article  Google Scholar 

  • 4.

    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).

    Article  Google Scholar 

  • 5.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Casida, J. E. & Durkin, K. A. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58, 99–117. https://doi.org/10.1146/annurev-ento-120811-153645 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. . Agron. Sustain. Dev. 33, 243–255. https://doi.org/10.1007/s13593-012-0105-x (2013).

    Article  Google Scholar 

  • 9.

    Casida, J. E. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu. Rev. Entomol. 63, 125–144. https://doi.org/10.1146/annurev-ento-020117-043042 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Matsuda, K., Ihara, M. & Sattelle, D. B. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu. Rev. Pharmacol. Toxicol. 60, 241–255. https://doi.org/10.1146/annurev-pharmtox-010818-021747 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Goulson, D. REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).

    Article  Google Scholar 

  • 12.

    Eng, M. L., Stutchbury, B. J. M. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365, 1177. https://doi.org/10.1126/science.aaw9419 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science (New York, N.Y.) 366, 620. https://doi.org/10.1126/science.aax3442 (2019).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192, 59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).

    CAS  Article  Google Scholar 

  • 16.

    EFSA. Peer review of the pesticide risk assessment of the active substance thiacloprid. Eur. Food Saf. Auth. J. 17, e05595 https://doi.org/10.2903/j.efsa.2019.5595 (2019).

    Article  Google Scholar 

  • 17.

    Nicholls, E. et al. Monitoring neonicotinoid exposure for bees in rural and peri-urban areas of the U.K. during the transition from pre- to post-moratorium. Environ. Sci. Technol. 52, 9391–9402. https://doi.org/10.1021/acs.est.7b06573 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Wintermantel, D. et al. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci. Total Environ. 704, 135400. https://doi.org/10.1016/j.scitotenv.2019.135400 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 19.

    Cressey, D. Fears for bees as UK lifts insecticide ban. Nature News. https://www.nature.com/news/fears-for-bees-as-uk-lifts-insecticide-ban-1.18052 (2015).

  • 20.

    Lamsa, J., Kuusela, E., Tuomi, J., Juntunen, S. & Watts, P. C. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proc. R. Soc. B 285, 20180506 https://doi.org/10.1098/rspb.2018.0506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Tasman, K., Rands, S. A. & Hodge, J. J. The neonicotinoid insecticide imidacloprid disrupts bumblebee foraging rhythms and sleep. iScience 23, 101827 https://doi.org/10.2139/ssrn.3586989 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Palmer, M. J. et al. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 4, 1634. https://doi.org/10.1038/ncomms2648 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Aso, Y. et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580. https://doi.org/10.7554/eLife.04580 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Barnstedt, O. et al. Memory-relevant mushroom body output synapses are cholinergic. Neuron 89, 1237–1247. https://doi.org/10.1016/j.neuron.2016.02.015 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86. https://doi.org/10.1146/annurev-ento-020117-043201 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Peng, Y. C. & Yang, E. C. Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci. Rep. 6, 19298. https://doi.org/10.1038/srep19298 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Smith, D. B. et al. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc. R. Soc. B 287, 20192442. https://doi.org/10.1098/rspb.2019.2442 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Andrione, M., Vallortigara, G., Antolini, R. & Haase, A. Neonicotinoid-induced impairment of odour coding in the honeybee. Sci. Rep. 6, 38110. https://doi.org/10.1038/srep38110 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Chouhan, N. S., Wolf, R., Helfrich-Förster, C. & Heisenberg, M. Flies remember the time of day. Curr. Biol. 25, 1619–1624. https://doi.org/10.1016/j.cub.2015.04.032 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Flyer-Adams, J. G. et al. Regulation of olfactory associative memory by the circadian clock output signal Pigment-dispersing factor (PDF). J. Neurosci. 40, 9066–9077https://doi.org/10.1523/JNEUROSCI.0782-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Zwaka, H. et al. Context odor presentation during sleep enhances memory in honeybees. Curr. Biol. 25(21), 869–2874. https://doi.org/10.1016/j.cub.2015.09.069 (2015).

    CAS  Article  Google Scholar 

  • 32.

    Seugnet, L., Suzuki, Y., Donlea, J. M., Gottschalk, L. & Shaw, P. J. Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep 34, 137–146. https://doi.org/10.1093/sleep/34.2.137 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Tackenberg, M. C. et al. Neonicotinoids disrupt circadian rhythms and sleep in honey bees. Sci. Rep. 10, 17929. https://doi.org/10.1038/s41598-020-72041-3 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Helfrich-Forster, C. et al. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 22, 9255–9266. https://doi.org/10.1523/JNEUROSCI.22-21-09255.2002 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Muraro, N. I. & Ceriani, M. F. Acetylcholine from visual circuits modulates the activity of arousal neurons in Drosophila. J. Neurosci. 35, 16315. https://doi.org/10.1523/JNEUROSCI.1571-15.2015 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    McCarthy, E. V. et al. Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J. Neurosci. 31, 8181–8193. https://doi.org/10.1523/jneurosci.2017-10.2011 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Parisky, K. M. et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60, 672–682. https://doi.org/10.1016/j.neuron.2008.10.042 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86. https://doi.org/10.1016/j.neubiorev.2018.01.015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Wegener, C., Hamasaka, Y. & Nassel, D. R. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J. Neurophysiol. 91, 912–923. https://doi.org/10.1152/jn.00678.2003 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802. https://doi.org/10.1016/s0092-8674(00)81676-1 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Schlichting, M., Menegazzi, P., Rosbash, M. & Helfrich-Förster, C. A distinct visual pathway mediates high-intensity light adaptation of the circadian clock in Drosophila. J. Neurosci. 39, 1621. https://doi.org/10.1523/JNEUROSCI.1497-18.2018 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Lelito, K. & Shafer, O. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila’s circadian clock neuron network. J. Neurophysiol. 107, 2096–2108. https://doi.org/10.1152/jn.00931.2011 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Nitabach, M. N. et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J. Neurosci. 26, 479–489. https://doi.org/10.1523/jneurosci.3915-05.2006 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Cao, G. & Nitabach, M. N. Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J. Neurosci. 28, 6493–6501. https://doi.org/10.1523/jneurosci.1503-08.2008 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Fernández, M. P., Berni, J. & Ceriani, M. F. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e69. https://doi.org/10.1371/journal.pbio.0060069 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. 97, 3608. https://doi.org/10.1073/pnas.97.7.3608 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Martelli, F. et al. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proc. Natl. Acad. Sci. 117(41), 25840–25850. https://doi.org/10.1073/pnas.2011828117 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Numata, H., Miyazaki, Y. & Ikeno, T. Common features in diverse insect clocks. Zool. Lett. 1, 10. https://doi.org/10.1186/s40851-014-0003-y (2015).

    Article  Google Scholar 

  • 49.

    Farris, S. & Sinakevitch, I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct. Dev. 32, 79–101. https://doi.org/10.1016/S1467-8039(03)00009-4 (2003).

    Article  PubMed  Google Scholar 

  • 50.

    Jones, A. K. & Sattelle, D. B. In Insect Nicotinic Acetylcholine Receptors (ed Thany, S. H.) 25–43 (Springer New York, 2010).

  • 51.

    Homem, R. A. et al. Evolutionary trade-offs of insecticide resistance—the fitness costs associated with target-site mutations in the nAChR of Drosophila melanogaster. Mol. Ecol. 29, 2661–2675. https://doi.org/10.1111/mec.15503 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Blacquiere, T., Smagghe, G., van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0863-x (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Stanley, D. A. & Raine, N. E. Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Sci. Rep. 7, 8005. https://doi.org/10.1038/s41598-017-08752-x (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351. https://doi.org/10.1126/science.1215025 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    Williamson, S. M., Willis, S. J. & Wright, G. A. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23, 1409–1418. https://doi.org/10.1007/s10646-014-1283-x (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Wright, G. A., Softley, S. & Earnshaw, H. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Sci. Rep. 5, 15322. https://doi.org/10.1038/srep15322 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Malik, B. R. & Hodge, J. J. Drosophila adult olfactory shock learning. J. Vis. Exp. 90, 50107. https://doi.org/10.3791/50107 (2014).

    CAS  Article  Google Scholar 

  • 58.

    Hodge, J. J. & Stanewsky, R. Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS ONE 3, e2274–e2274. https://doi.org/10.1371/journal.pone.0002274 (2008).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Moffat, C. et al. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Sci. Rep. 6, 24764. https://doi.org/10.1038/srep24764 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Busto, G. U., Cervantes-Sandoval, I. & Davis, R. L. Olfactory learning in Drosophila. Physiology 25, 338–346. https://doi.org/10.1152/physiol.00026.2010 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Lyons, L. C. & Roman, G. Circadian modulation of short-term memory in Drosophila. Learn. Mem. 16, 19–27. https://doi.org/10.1101/lm.1146009 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Depetris-Chauvin, A. et al. Adult-specific electrical silencing of pacemaker neurons uncouples the molecular oscillator from circadian outputs. Curr. Biol. 21, 1783–1793. https://doi.org/10.1016/j.cub.2011.09.027 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Baz, E.-S., Wei, H., Grosshans, J. & Stengl, M. Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine. J. Comp. Physiol. A. 199, 365–374. https://doi.org/10.1007/s00359-013-0800-3 (2013).

    CAS  Article  Google Scholar 

  • 64.

    Sheeba, V. et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545. https://doi.org/10.1016/j.cub.2008.08.033 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Thany, S. H. Insect Nicotinic Acetylcholine Receptors (Springer, New York, 2011).

    Google Scholar 

  • 66.

    Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).

    Article  Google Scholar 

  • 67.

    Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Phil. Trans. R. Soc. B 372, 20160256. https://doi.org/10.1098/rstb.2016.0256 (2017).

    CAS  Article  Google Scholar 

  • 68.

    van Alphen, B., Yap, M. H. W., Kirszenblat, L., Kottler, B. & van Swinderen, B. A dynamic deep sleep stage in Drosophila. J. Neurosci. 33, 6917. https://doi.org/10.1523/JNEUROSCI.0061-13.2013 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Buhl, E., Higham, J. P. & Hodge, J. J. L. Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol. Dis. 130, 104507. https://doi.org/10.1016/j.nbd.2019.104507 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Signal analysis of behavioral and molecular cycles. BMC Neurosci. 3, 1. https://doi.org/10.1186/1471-2202-3-1 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Faville, R., Kottler, B., Goodhill, G. J., Shaw, P. J. & van Swinderen, B. How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Sci. Rep. 5, 8454. https://doi.org/10.1038/srep08454 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Donelson, N. C. et al. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7, e37250. https://doi.org/10.1371/journal.pone.0037250 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676. https://doi.org/10.1038/nmeth.2019 (2012).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road