in

Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism

[adace-ad id="91168"]
  • 1.

    Limpricht KG. Die laubmoose. In: Rabenhorst L (ed). Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, Zweite Auflage. 1890. Kummer, Leipzig.

  • 2.

    Basilier K. Fixation and uptake of nitrogen in Sphagnum blue-green algal associations. Oikos. 1980;34:239.

    CAS 

    Google Scholar 

  • 3.

    Granhall U, Selander H. Nitrogen fixation in a subarctic mire. Oikos. 1973;24:8.

    Google Scholar 

  • 4.

    Basilier K, Granhall U, Stenström T-A. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos. 1978;31:236.

    CAS 

    Google Scholar 

  • 5.

    Basilier K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia. 1979;5:84–88.

    CAS 

    Google Scholar 

  • 6.

    Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K (ed). Prokaryotic symbionts in plants. 2007. Springer, Berlin, Heidelberg, pp 181–205.

  • 7.

    Adams DG. Cyanobacteria in symbiosis with hornworts and liverworts. Cyanobacteria in symbiosis. 2002. Springer, Dordrecht, pp 117-35.

  • 8.

    Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. N Phytol. 2016;211:57–64.

    CAS 

    Google Scholar 

  • 10.

    Granhall U, Hofsten AV. Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiol Plant. 1976;36:88–94.

    Google Scholar 

  • 11.

    van den Elzen E, Kox MAR, Harpenslager SF, Hensgens G, Fritz C, Jetten MSM, et al. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences. 2017;14:1111–22.

    Google Scholar 

  • 12.

    Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the last glacial maximum. Geophys Res Lett. 2010;37:1–5.

    Google Scholar 

  • 13.

    Lindo Z, Nilsson MC, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.

    PubMed 

    Google Scholar 

  • 14.

    Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, et al. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob Chang Biol. 2019;25:2993–3004.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Rai AN, Söderbäck E, Bergman B. Tansley Review No. 116. N Phytol. 2000;147:449–81.

    CAS 

    Google Scholar 

  • 16.

    Adams DG, Duggan PS. Cyanobacteria-bryophyte symbioses. J Exp Bot. 2008;59:1047–58.

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60.

    CAS 

    Google Scholar 

  • 18.

    Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis. ISME J. 2017;12:1–13.

    Google Scholar 

  • 19.

    Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. ISME J. 2020;14:3068–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Veličković D, Chu RK, Carrell AA, Thomas M, Paša-Tolić L, Weston DJ, et al. Multimodal MSI in conjunction with broad coverage spatially resolved MS2 increases confidence in both molecular identification and localization. Anal Chem. 2018;90:702–7.

    PubMed 

    Google Scholar 

  • 21.

    Nagy G, Veličković D, Chu RK, Carrell AA, Weston DJ, Ibrahim YM, et al. Towards resolving the spatial metabolome with unambiguous molecular annotations in complex biological systems by coupling mass spectrometry imaging with structures for lossless ion manipulations. Chem Commun. 2019;55:306–9.

    CAS 

    Google Scholar 

  • 22.

    Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.

    Google Scholar 

  • 24.

    Hanson PJ, Riggs JS, Robert Nettles W, Phillips JR, Krassovski MB, Hook LA, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences. 2017;14:861–83.

    CAS 

    Google Scholar 

  • 25.

    Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. Plant Biol. 2005;7:220–7.

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Yao Y, Sun T, Wang T, Ruebel O, Northen T, Bowen BP. Analysis of metabolomics datasets with high-performance computing and metabolite atlases. Metabolites. 2015;5:431–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    CAS 

    Google Scholar 

  • 29.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Seemann T. Genome analysis Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 

    Google Scholar 

  • 32.

    Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12:879–92.

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Black K, Osborne B. An assessment of photosynthetic downregulation in cyanobacteria from the Gunnera-Nostoc symbiosis. N Phytol. 2004;162:125–32.

    CAS 

    Google Scholar 

  • 35.

    Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Ann Bot. 2013;111:743–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Clymo RS. The growth of Sphagnum: some effects of environment. Br Ecol Soc. 1973;61:849–69.

    Google Scholar 

  • 37.

    Lamers LPM, Farhoush C, Van Groenendael JM, Roelofs JGM. Calcareous groundwater raises bogs; the concept of ombrotrophy revisited. J Ecol. 1999;87:639–48.

    Google Scholar 

  • 38.

    Nayak S, Prasanna R. Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res. 2007;5:103–13.

    Google Scholar 

  • 39.

    Jassey VEJ, Meyer C, Dupuy C, Bernard N, Mitchell EAD, Toussaint ML, et al. To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland? Micro Ecol. 2013;66:571–80.

    Google Scholar 

  • 40.

    Meeks JC. Symbiosis between nitrogen- fixing cyanobacteria and plants. Symbiosis. 1998;48:266–76.

    Google Scholar 

  • 41.

    Pate S, Lindblad P, Atkins A. Planta in coralloid roots of cycad-Nostoc symbioses. Planta. 1988;176:461–71.

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Xie B, Chen DS, Zhou K, Xie YQ, Li YG, Hu GY, et al. Symbiotic abilities of Sinorhizobium fredii with modified expression of purL. Appl Microbiol Biotechnol. 2006;71:505–14.

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Xie B, Chen D, Cheng G, Ying Z, Xie F, Li Y, et al. Effects of the purl gene expression level on the competitive nodulation ability of Sinorhizobium fredii. Curr Microbiol. 2009;59:193–8.

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science. 2007;316:1307–12.

    PubMed 

    Google Scholar 

  • 45.

    Kim JK, Jang HA, Won YJ, Kikuchi Y, Heum Han S, Kim CH, et al. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME J. 2014;8:552–63.

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    An R, Grewal PS. Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS ONE. 2010;5:e13154.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol. 2006;57:805–36.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol. 2007;144:550–61.

  • 49.

    Ueda S, Ikeda M, Yamakawa T. Provision of carbon skeletons for amide synthesis in non-nodulated soybean and pea roots in response to the source of nitrogen supply. Soil Sci Plant Nutr. 2008;54:732–7.

    CAS 

    Google Scholar 

  • 50.

    Kaur H, Chowrasia S, Gaur VS, Mondal TK. Allantoin: emerging role in plant abiotic stress tolerance. Plant Mol Biol Rep. 2021;39:648–61.

    Google Scholar 

  • 51.

    Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–41.

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Iturriaga G, Suárez R, Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci. 2009;10:3793–810.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, et al. Trehalose: metabolism and role in stress signaling in plants. Stress signaling in plants: genomics and proteomics perspective, Volume 2. 2016. Springer International Publishing, pp 261–75.

  • 54.

    Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. Elife. 2020;9:1–28.

    Google Scholar 

  • 55.

    Streeter JG. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol. 2003;95:484–91.

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Sugawara M, Cytryn EJ, Sadowsky MJ. Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol. 2010;76:1071–81.

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, et al. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact. 2008;21:958–66.

    PubMed 

    Google Scholar 

  • 58.

    Mackay MA, Norton RS, Borowitzka LJ. Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol. 1984;130:2177–91.

    CAS 

    Google Scholar 

  • 59.

    Reed RH, Richardson DL, Warr SRC, Stewart WDP. Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol. 1984;130:1–4.

    CAS 

    Google Scholar 

  • 60.

    Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989,53:121–47.

  • 61.

    Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Dedysh SN, Kulichevskaya IS, et al. Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland planctomycetes. Appl Environ Microbiol. 2013;79:6874–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, et al. Taurine is a major carbon and energy source for marine prokaryotes in the North Atlantic ocean off the Iberian Peninsula. Micro Ecol. 2019;78:299–312.

    CAS 

    Google Scholar 

  • 63.

    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995,7:1085–97.

  • 65.

    Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol. 2012;12:39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153:1526–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Kouchi H. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res. 2004;11:263–74.

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Chen Y, Li F, Tian L, Huang M, Deng R, Li X, et al. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus -rhizobium symbioses. Mol Plant-Microbe Interact. 2017;30:739–53.

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep. 2013;3:1955.

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

    Timber or steel? Study helps builders reduce carbon footprint of truss structures