in

Overwintering fires in boreal forests

[adace-ad id="91168"]
  • 1.

    Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).

    ADS 

    Google Scholar 

  • 2.

    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 7, 529–534 (2017).

    ADS 

    Google Scholar 

  • 3.

    Calef, M. P., McGuire, A. D. & Chapin, F. S. Human influences on wildfire in Alaska from 1988 through 2005: an analysis of the spatial patterns of human impacts. Earth Interact. 12, 1–17 (2008).

    ADS 

    Google Scholar 

  • 4.

    McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Irannezhad, M., Liu, J., Ahmadi, B. & Chen, D. The dangers of Arctic zombie wildfires. Science 369, 1171 (2020).

    ADS 

    Google Scholar 

  • 6.

    Rein, G. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 15–34 (Wiley-Blackwell, 2013).

  • 7.

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).

    ADS 

    Google Scholar 

  • 9.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    ADS 

    Google Scholar 

  • 10.

    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Walker, X. J. et al. Soil organic layer combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada. Int. J. Wildl. Fire 27, 125–134 (2018).

    Google Scholar 

  • 13.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Coops, N. C., Hermosilla, T., Wulder, M. A., White, J. C. & Bolton, D. K. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS One 13, e0197218 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    USDA Forest Service, USFS-USDI and NASF. Large Fire Cost Reduction Action Plan https://www.fs.usda.gov/sites/default/files/media_wysiwyg/5100_largefirecostreductionaction_mar_03.pdf (2003).

  • 17.

    Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Modell. 221, 1301–1309 (2010).

    Google Scholar 

  • 18.

    Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020); erratum 8, 100045 (2020).

    Google Scholar 

  • 19.

    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 107, https://doi.org/10.1029/2001JD000484 (2002).

  • 20.

    Wiggins, E. B. et al. Evidence for a larger contribution of smoldering combustion to boreal forest fire emissions from tower observations in Alaska. Atmos. Chem. Phys. https://doi.org/10.5194/acp-2019-1067 (in the press).

  • 21.

    Rein, G., Garcia, J., Simeoni, A., Tihay, V. & Ferrat, L. Smouldering natural fires: comparison of burning dynamics in boreal peat and Mediterranean humus. WIT Trans. Ecol. Environ. 119, 183–192 (2008).

    Google Scholar 

  • 22.

    Baber, C. & McMaster, R. 2019 Alaska Statewide Annual Operating Plan. https://fire.ak.blm.gov/administration/asma.php (Alaska Statewide Master Agreement, 2019).

  • 23.

    Alaska Interagency Coordination Center. 2010 Alaska fire statistics. https://www.frames.gov/catalog/12055 (Wildland Fire Summary and Statistics Annual Report, 2010).

  • 24.

    Alaska Division of Forestry. State Forestry monitoring hot spots that overwintered from Deshka Landing Fire. https://akfireinfo.com/2020/04/10/state-forestry-monitoring-hot-spots-that-overwintered-from-deshka-landing-fire/ (2020).

  • 25.

    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Kasischke, E. S., Rupp, T. S. & Verbyla, D. L. in Alaska’s Changing Boreal Forest (eds Chapin, F. S. III, Oswood, M. et al.) 285–301 (Oxford Univ. Press, 2006).

  • 27.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Painter, T. H. et al. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868–879 (2009).

    ADS 

    Google Scholar 

  • 29.

    Scholten, R. C., Jandt, R. R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. ABoVE: Ignitions, burned area and emissions of fires in AK, YT, and NWT, 2001–2018. https://doi.org/10.3334/ORNLDAAC/1812 (2020).

  • 30.

    Xiao, J. & Zhuang, Q. Drought effects on large fire activity in Canadian and Alaskan forests. Environ. Res. Lett. 2, 044003 (2007).

    ADS 

    Google Scholar 

  • 31.

    Flannigan, M. D. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294, 54–61 (2013).

    Google Scholar 

  • 32.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Adams, W. H. The Role of Fire in the Alaska Taiga. An Unsolved Problem (Bureau of Land Management, State Office, Anchorage, AK, 1974); preprint at https://scholarworks.alaska.edu/handle/11122/6675 (2016).

  • 34.

    Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • 35.

    Kane, E. S., Kasischke, E. S., Valentine, D. W., Turetsky, M. R. & McGuire, A. D. Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. J. Geophys. Res. Biogeosci. 112, 1–11 (2007).

    Google Scholar 

  • 36.

    Hoy, E. E., Turetsky, M. R. & Kasischke, E. S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environ. Res. Lett. 11, 095001 (2016).

    ADS 

    Google Scholar 

  • 37.

    Miyanishi, K. & Johnson, E. A. Process and patterns of duff consumption in the mixedwood boreal forest. Can. J. For. Res. 32, 1285–1295 (2002).

    Google Scholar 

  • 38.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL025677 (2006).

  • 39.

    Johnstone, J. F. et al. Factors shaping alternate successional trajectories in burned black spruce forests of Alaska. Ecosphere 11, https://doi.org/10.1002/ecs2.3129 (2020).

  • 40.

    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    Google Scholar 

  • 41.

    Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15, 955–966 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).

    ADS 

    Google Scholar 

  • 43.

    Beaudoin, A., Bernier, P. Y., Villemaire, P., Guindon, L. & Guo, X. J. Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery. Can. J. For. Res. 48, 85–93 (2018).

    Google Scholar 

  • 44.

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosci. Discuss. 12, 3579–3601 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Kasischke, E. S. et al. Quantifying burned area for North American forests: implications for direct reduction of carbon stocks. J. Geophys. Res. Biogeosci. 116, 1–17 (2011).

    Google Scholar 

  • 46.

    Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).

    Google Scholar 

  • 47.

    Burrows, W. R. & Kochtubajda, B. A decade of cloud-to-ground lightning in Canada: 1999-2008. Part 1: flash density and occurrence. Atmos.-Ocean 48, 177–194 (2010).

    Google Scholar 

  • 48.

    Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).

    ADS 

    Google Scholar 

  • 49.

    Kochtubajda, B. et al. Exceptional cloud-to-ground lightning during an unusually warm summer in Yukon, Canada. J. Geophys. Res. Atmos. 116, https://doi.org/10.1029/2011JD016080 (2011).

  • 50.

    Kochtubajda, B., Stewart, R. & Tropea, B. Lightning and weather associated with the extreme 2014 wildfire season in Canada’s Northwest Territories. In Proceedings of the 24th International Lightning Detection Conference 1–4 (VAISALA, 2016).

  • 51.

    Dowdy, A. J. & Mills, G. A. Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteorol. Climatol. 51, 2025–2037 (2012).

    ADS 

    Google Scholar 

  • 52.

    Larjavaara, M., Pennanen, J. & Tuomi, T. J. Lightning that ignites forest fires in Finland. Agric. For. Meteorol. 132, 171–180 (2005).

    ADS 

    Google Scholar 

  • 53.

    Duncan, B. W., Adrian, F. W. & Stolen, E. D. Isolating the lightning ignition regime from a contemporary background fire regime in east-central Florida, USA. Can. J. For. Res. 40, 286–297 (2010).

    Google Scholar 

  • 54.

    Veraverbeke, S. et al. Mapping the daily progression of large wildland fires using MODIS active fire data. Int. J. Wildl. Fire 23, 655–667 (2014).

    Google Scholar 

  • 55.

    Statistics Canada. Road Network File 2010. https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (2016).

  • 56.

    Government of Yukon. Corporate Spatial Warehouse. ftp://ftp.geomaticsyukon.ca/GeoYukon/Transportation/Roads_1M/ (2018).

  • 57.

    Rittger, K., Painter, T. H. & Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380 (2013).

    ADS 

    Google Scholar 

  • 58.

    Gallant, A. L., Binnian, E. F., Omernik, J. M. & Shasby, M. B. Ecoregions of Alaska (Professional Paper 1567, USGS, 1995).

  • 59.

    Canadian Council on Ecological Areas (CCEA). Canada ecozones. https://ccea-ccae.org/ecozones-downloads/ (2016).

  • 60.

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    ADS 

    Google Scholar 

  • 61.

    Van Wagner, C. E. Development and Structure of the Canadian Fire Weather Index System. Forestry Technical Report Vol. 35 (Canadian Forestry Service Headquarters, Ottawa, 1987).

  • 62.

    York, A. D. & Jandt, R. R. Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management & Science: A Workshop Report www.frames.gov/catalog/57849 (University of Alaska, Fairbanks, 2019).

  • 63.

    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).

    ADS 

    Google Scholar 

  • 64.

    Welch, B. L. The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362 (1938).

    MATH 

    Google Scholar 

  • 65.

    Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 66.

    Morin, P. et al. ArcticDEM; a publically available, high resolution elevation model of the Arctic. Geophys. Res. Abstr. 18, EGU2016-8396 (2016).

    Google Scholar 

  • 67.

    Porter, C. et al. ArcticDEM. https://doi.org/10.7910/DVN/OHHUKH (Harvard Dataverse, 2018).

  • 68.

    Dai, C., Durand, M., Howat, I. M., Altenau, E. H. & Pavelsky, T. M. Estimating river surface elevation from arcticDEM. Geophys. Res. Lett. 45, 3107–3114 (2018).

    ADS 

    Google Scholar 

  • 69.

    Hansen, M. C. et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact. 7, 1–15 (2003).

    Google Scholar 

  • 70.

    Pettinari, M. L. & Chuvieco, E. Generation of a global fuel data set using the fuel characteristic classification system. Biogeosciences 13, 2061–2076 (2016).

    ADS 

    Google Scholar 

  • 71.

    Ottmar, R. D., Sandberg, D. V., Riccardi, C. L. & Prichard, S. J. An overview of the fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 37, 2383–2393 (2007).

    Google Scholar 

  • 72.

    Riccardi, C. L. et al. The fuelbed: a key element of the fuel characteristic classification system. Can. J. For. Res. 37, 2394–2412 (2007).

    Google Scholar 

  • 73.

    Beaudoin, A., Bernier, P. Y., Villemaire, P., Guindon, L. & Guo, X. Species Composition, Forest Properties and Land Cover Types Across Canada’s Forests at 250m Resolution for 2001 and 2011. https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (Natural Resources Canada, Canadian Forest Service, Laurentian Forest Centre, 2017).

  • 74.

    Hugelius, G. et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture