in

Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass

[adace-ad id="91168"]
  • 1.

    Baroiller, J. F., Cotta, H. & Saillant, E. Environmental effects on fish sex determination and differentiation. Sex. Develop. 3, 118–135 (2009).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Conover, D. O. & Kynard, B. E. Environmental sex determination: interaction of temperature and genotype in a fish. Science 213, 577–579 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Ospina-Álvarez, N. & Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3, e2837 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Geffroy, B. & Wedekind, C. Effects of global warming on sex ratios in fishes. J. Fish Biol. 97, 596–606 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Römer, U. & Beisenherz, W. Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei). J. Fish Biol. 48, 714–725 (1996).

    Google Scholar 

  • 6.

    Geffroy, B. & Bardonnet, A. Sex differentiation and sex determination in eels: consequences for management. Fish Fish 17, 375–398 (2016).

    Article 

    Google Scholar 

  • 7.

    Ribas, L., Valdivieso, A., Díaz, N. & Piferrer, F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 220, 1056–1064 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Hattori, R. S., Castañeda-Cortés, D. C., Arias Padilla, L. F., Strobl-Mazzulla, P. H. & Fernandino, J. I. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-020-03532-9 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268 (1999).

    Article 

    Google Scholar 

  • 10.

    Prunet, P., Sturm, A. & Milla, S. Multiple corticosteroid receptors in fish: From old ideas to new concepts. Gen. Comp. Endocrinol. 147, 17–23 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Manna, P. R., Dyson, M. T. & Stocco, D. M. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321–333 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Nematollahi, M. A., van Pelt-Heerschap, H. & Komen, J. Transcript levels of five enzymes involved in cortisol synthesis and regulation during the stress response in common carp: relationship with cortisol. Gen. Comp. Endocrinol. 164, 85–90 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Wu, X. et al. Integration of ATAC-seq and RNA-seq unravels chromatin accessibility during sex reversal in orange-spotted grouper (Epinephelus coioides). Int. J. Mol. Sci. 21, 2800 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Blasco, M. et al. Molecular characterization of cyp11a1 and cyp11b1 and their gene expression profile in pejerrey (Odontesthes bonariensis) during early gonadal development. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 110–118 (2010).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).

  • 16.

    Fernandino, J. I., Hattori, R. S., Moreno Acosta, O. D., Strüssmann, C. A. & Somoza, G. M. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen. Comparat. Endocrinol. 192, 36–44 (2013).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Geffroy, B. & Douhard, M. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628–640 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Chiba, H., Iwata, M., Yakoh, K., Satoh, R.-I. & Yamada, H. Possible influence of social stress on sex differentiation in Japanese eel. Fish. Sci. 68, 413–414 (2002).

    Article 

    Google Scholar 

  • 19.

    Hoseini, S. M., Pérez-Jiménez, A., Costas, B., Azeredo, R. & Gesto, M. Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Rev. Aquac. 11, 3–24 (2019).

    Article 

    Google Scholar 

  • 20.

    Vandeputte, M., Gagnaire, P.-A. & Allal, F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim. Genet. https://doi.org/10.1111/age.12779 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Vandeputte, M., Dupont-Nivet, M., Chavanne, H. & Chatain, B. B. A polygenic hypothesis for sex determination in the European Sea Bass Dicentrarchus labrax. Genetics 176, 1049–1057 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Piferrer, F., Blazquez, M., Navarro, L. & Gonzalez, A. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comparat. Endocrinol. 142, 102–110 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Vandeputte, M. & Piferrer, F. Genetic and environmental components of sex determination in the European sea bass (Dicentrarchus labrax). In Sex Control in Aquaculture Vol. I (eds. Wang, H. P., Piferrer, F. & Chen, S. L.) 307–325 (John Wiley and Sons, 2019).

  • 24.

    Bláquez, M., Zanuy, S., Carillo, M. & Piferrer, F. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 281, 207–216 (1998).

    Article 

    Google Scholar 

  • 25.

    Saillant, E. et al. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494–505 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Vandeputte, M. et al. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol. Evol. 10, 13825 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Saillant, E. et al. Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L) in intensive aquaculture. Aquaculture 221, 183–206 (2003).

    Article 

    Google Scholar 

  • 28.

    Faggion, S. et al. Sex dimorphism in European sea bass (Dicentrarchus labrax L.): new insights into sex-related growth patterns during very early life stages. PLoS ONE 16, e0239791 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Ferrari, S. et al. Early individual electronic identification of sea bass using RFID microtags: a first example of early phenotyping of sex-related growth. Aquaculture 426–427, 165–171 (2014).

    Article 

    Google Scholar 

  • 30.

    Besson, M. et al. Influence of water temperature on the economic value of growth rate in fish farming: the case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture 462, 47–55 (2016).

    Article 

    Google Scholar 

  • 31.

    Blázquez, M., González, A., Papadaki, M., Mylonas, C. & Piferrer, F. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 158, 95–101 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Ribas, L. et al. Characterization of the European Sea Bass (Dicentrarchus labrax) gonadal transcriptome during sexual development. Mar Biotechnol 21, 359–373 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Pavlidis, M. et al. Onset of the primary stress in European sea bass Dicentrarhus labrax, as indicated by whole body cortisol in relation to glucocorticoid receptor during early development. Aquaculture 315, 125–130 (2011).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Tsalafouta, A. et al. Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci. Rep. 4, (2014).

  • 35.

    Alfonso, S., Gesto, M. & Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. https://doi.org/10.1111/jfb.14599 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Goikoetxea, A. et al. Genetic pathways underpinning hormonal stress responses in fish exposed to short- and long-term warm ocean temperatures. Ecol. Indic. 120, 106937 (2021).

    Article 

    Google Scholar 

  • 37.

    Bertotto, D. et al. Alternative matrices for cortisol measurement in fish. Aquac. Res. 41, 1261–1267 (2010).

    CAS 

    Google Scholar 

  • 38.

    Sadoul, B., Leguen, I., Colson, V., Friggens, N. C. & Prunet, P. A multivariate analysis using physiology and behavior to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol. Behav. 140, 139–147 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Simontacchi, C. et al. Alternative stress indicators in sea bass Dicentrarchus labrax L. J. Fish Biol. 72, 747–752 (2008).

    Article 

    Google Scholar 

  • 40.

    Zuberi, A., Brown, C. & Ali, S. Effect of confinement on water-borne and whole body cortisol in wild and captive-reared rainbowfish (Melanoteania duboulayi). Int. J. Agric. Biol. 16, 183–188 (2014).

  • 41.

    Cortés, D. C. C., Padilla, L. F. A., Langlois, V. S., Somoza, G. M. & Fernandino, J. I. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 146, (2019).

  • 42.

    Faught, E. & Vijayan, M. M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci. Rep. 8, 18081 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Kiilerich, P., Geffroy, B., Valotaire, C. & Prunet, P. Endogenous regulation of 11-deoxycorticosterone (DOC) and corticosteroid receptors (CRs) during rainbow trout early development and the effects of corticosteroids on hatching. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2018.05.031 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 44.

    Rosengren, M., Thörnqvist, P.-O., Winberg, S. & Sundell, K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen. Comp. Endocrinol. 257, 235–245 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Kiilerich, P. et al. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen. Comp. Endocrinol. 258, 184–193 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Stolte, E. H. et al. Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J. Endocrinol. 198, 403–417 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Madaro, A. et al. Stress in Atlantic salmon: response to unpredictable chronic stress. J. Exp. Biol. 218, 2538–2550 (2015).

    PubMed 

    Google Scholar 

  • 48.

    Aerts, J. et al. Scales tell a story on the stress history of fish. PLOS ONE 10, e0123411 (2015).

  • 49.

    Moltesen, M. et al. Effects of acute and chronic stress on telencephalic neurochemistry and gene expression in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 219, 3907–3914 (2016).

    PubMed 

    Google Scholar 

  • 50.

    Smith, B. R. Sea lampreys in the Great Lakes of North America. 207–247 (1971).

  • 51.

    García-Cruz, E. L. et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comparat. Biochem. Physiol. A: Mol. Integrat. Physiol. 245, 110701 (2020).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Vandeputte, M. & Piferrer, F. Genetic and Environmental Components of Sex Determination in the European Sea Bass. In Sex Control in Aquaculture 305–325 (John Wiley & Sons, Ltd, 2018). https://doi.org/10.1002/9781119127291.ch14.

  • 53.

    Díaz, N., Ribas, L. & Piferrer, F. The relationship between growth and sex differentiation in the European sea bass (Dicentrarchus labrax). Aquaculture 408–409, 191–202 (2013).

    Article 

    Google Scholar 

  • 54.

    Papadaki, M. et al. Growth, sex differentiation and gonad and plasma levels of sex steroids in male- and female-dominant populations of Dicentrarchus labrax obtained through repeated size grading. J. Fish Biol. 66, 938–956 (2005).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Sadoul, B. & Vijayan, M. M. 5 – Stress and Growth. In Fish Physiology Vol. 35 (eds. Schreck, C. B., Tort, L., Farrell, A. P. & Brauner, C. J.) 167–205 (Academic Press, 2016).

  • 56.

    Sakae, Y. et al. Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka (Olyzias latipes). Biology Open 9, (2020).

  • 57.

    Höglund, E., Øverli, Ø. & Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front. Endocrinol. 10, (2019).

  • 58.

    Amri, A. et al. Effect of melatonin and folic acid supplementation on the growth performance, antioxidant status, and liver histology of the farmed gilthead sea bream (Sparus aurata L.) under standard rearing conditions. Fish Physiol. Biochem. 46, 2265–2280 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    de Pedro, N., Pinillos, M. L., Valenciano, A. I., Alonso-Bedate, M. & Delgado, M. J. Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19, 505–511 (1998).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Papoutsoglou, S. E., Karakatsouli, N. & Chiras, G. Dietary l-tryptophan and tank colour effects on growth performance of rainbow trout (Oncorhynchus mykiss) juveniles reared in a recirculating water system. Aquacult. Eng. 32, 277–284 (2005).

    Article 

    Google Scholar 

  • 61.

    Lam, D. D., Garfield, A. S., Marston, O. J., Shaw, J. & Heisler, L. K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 97, 84–91 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Tsai, C.-L., Wang, L.-H., Chang, C.-F. & Kao, C.-C. Effects of gonadal steroids on brain serotonergic and aromatase activity during the critical period of sexual differentiation in Tilapia, Oreochromis mossambicus. J. Neuroendocrinol. 12, 894–898 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Raghuveer, K. et al. Gender differences in tryptophan hydroxylase-2 mRNA, serotonin, and 5-hydroxytryptophan levels in the brain of catfish, Clarias gariepinus, during sex differentiation. Gen. Comp. Endocrinol. 171, 94–104 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Sudhakumari, C. C. et al. Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. Gen. Comp. Endocrinol. 166, 320–329 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Senthilkumaran, B. et al. “Brain sex differentiation” in teleosts: emerging concepts with potential biomarkers. Gen. Comp. Endocrinol. 220, 33–40 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Carpenter, R. E. et al. Corticotropin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Horm. Behav. 52, 600–611 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Clements, S. haun, Moore, F. L. & Schreck, C. B. Evidence that acute serotonergic activation potentiates the locomotor-stimulating effects of corticotropin-releasing hormone in juvenile chinook salmon (Oncorhynchus tshawytscha). Horm. Behav. 43, 214–221 (2003).

  • 68.

    Grima, L. et al. In search for indirect criteria to improve feed utilization efficiency in sea bass (Dicentrarchus labrax). Aquaculture 302, 169–174 (2010).

    Article 

    Google Scholar 

  • 69.

    Geffroy, B. et al. Nature-based tourism elicits a phenotypic shift in the coping abilities of fish. Front. Physiol. 9, (2018).

  • 70.

    Sadoul, B. & Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 94, 540–555 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Sadoul, B. et al. Enhanced brain expression of genes related to cell proliferation and neural differentiation is associated with cortisol receptor expression in fishes. Gen. Comp. Endocrinol. 267, 76–81 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Alfonso, S. et al. Coping styles in European sea bass: the link between boldness, stress response and neurogenesis. Physiol. Behav. 207, 76–85 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Samaras, A. & Pavlidis, M. Regulation of divergent cortisol responsiveness in European sea bass, Dicentrarchus labrax L. PLoS ONE 13, e0202195 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Gesto, M., Skov, P. V. & Jokumsen, A. Emergence time and skin melanin spot patterns do not correlate with growth performance, social competitive ability or stress response in farmed rainbow trout. Front. Neurosci. 11, (2017).

  • 76.

    Menu, B., Peruzzi, S., Vergnet, A., Vidal, M.-O.O. & Chatain, B. A shortcut method for sexing juvenile European sea bass, Dicentrarchus labrax L. Aquacult. Res. 36, 41–44 (2005).

    Article 

    Google Scholar 

  • 77.

    Griot, R. et al. Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57k SNP array DlabChip. Aquaculture 530, 735930 (2021).

  • 78.

    Griot, R. et al. APIS: An auto-adaptive parentage inference software that tolerates missing parents. Mol. Ecol. Resour. 20, 579–590 (2020).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset