Passive eDNA collection enhances aquatic biodiversity analysis

  • 1.

    Taberlet, P., Bonin, A., Zinger, L, & Coissac, E. Environmental DNA, for Biodiversity Research and Monitoring (Oxford Univ. Press, 2018).

  • 2.

    Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Wilcox, T. M., McKelvey, K. S., Young, M. K., Lowe, W. H. & Schwartz, M. K. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conserv. Genet. Resour. 7, 639–641 (2015).

    Article  Google Scholar 

  • 4.

    Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article  Google Scholar 

  • 5.

    Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2, 1192–1193 (2018).

    PubMed  Article  Google Scholar 

  • 7.

    Jeunen, G.-J. et al. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization. Ecol. Evol. 9, 1323–1335 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Turner, C. R. et al. Particle size distribution and optimal capture of aqueous microbial eDNA. Methods Ecol. Evol. 5, 676–684 (2014).

    Article  Google Scholar 

  • 9.

    Koziol, A. et al. Environmental DNA metabarcoding studies are critically affected by substrate selection. Mol. Ecol. Resour. 19, 366–376 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis – a review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).

    Article  Google Scholar 

  • 11.

    Shu, L., Ludwig, A. & Peng, Z. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11, 296 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 12.

    Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183, 53–63 (2015).

    Article  Google Scholar 

  • 13.

    Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19, 426–438 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Thomas, A. C., Howard, J., Nguyen, P. L., Seimon, T. A. & Goldberg, C. S. ANDeTM: a fully integrated environmental DNA sampling system. Methods Ecol. Evol. 9, 1379–1385 (2018).

    Article  Google Scholar 

  • 15.

    Schumer, G. et al. Utilizing environmental DNA for fish eradication effectiveness monitoring in streams. Biol. Invasions 21, 3415–3426 (2019).

    Article  Google Scholar 

  • 16.

    Zinger, L. et al. DNA metabarcoding – need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    PubMed  Article  Google Scholar 

  • 17.

    Bessey, C. et al. Maximizing fish detection with eDNA metabarcoding. Environ. DNA 2, 493–504, (2020).

    Article  Google Scholar 

  • 18.

    Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. Ser. B 286, 20191409 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. 1, (2018).

  • 20.

    Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the water: effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 22.

    Hanfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 23.

    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    McQuillan, J. S. & Robidart, J. C. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr. Opin. Biotechnol. 45, 43–50 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Schabacker, J. C. et al. Increased eDNA detection sensitivity using a novel high-volume water sampling method. Environ. DNA 2, 244–251 (2020).

    Article  Google Scholar 

  • 26.

    Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samples. Curr. Biol. 29, R395–R402 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Keesing, J., Webber, B.L. & Hardiman, L. Ashmore Reef Marine Park Environmental Assessment. Final report to director of National Park (2020).

  • 28.

    Kirtane, A., Atkinson, J. D. & Sassoubre, L. Design and validation of passive environmental DNA samplers using granular activated carbon and montmorillonite clay. Environ. Sci. Technol. (2020).

    Article  PubMed  Google Scholar 

  • 29.

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. Resour. 21, 1789–1793 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Fonseca, V. G. Pitfalls in relative abundance estimation using eDNA metabarcoding. Mol. Ecol. Resour. 18, 923–926 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Lamb, P. D. et al. How quantitative is metabarcoding: a meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).

    PubMed  Article  Google Scholar 

  • 32.

    Derocles, S. A. P. et al. Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Adv. Ecol. Res. 58, 1–62 (2018).

    Article  Google Scholar 

  • 33.

    Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    MacKenzie, D. I. What are the issues with presence-absence data for wildlife managers? J. Wildl. Manag. 69, 849–860 (2005).

    Article  Google Scholar 

  • 35.

    Liang, Z. & Keeley, A. Filtration recovery of extracellular DNA from environmental water samples. Environ. Sci. Technol. 47, 9324–9331 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Eichmiller, J. J., Miller, L. M. & Sorensen, P. W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol. Ecol. Resour. 16, 56–68 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Majaneva, M. et al. Environmental DNA filtration techniques affect recovered biodiversity. Sci. Rep. 8, 4682 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Stier, A. C., Bolker, B. M. & Osenberg, C. W. Using rarefaction to isolate the effects of patch size and sampling effort on beta diversity. Ecosphere 7, e01612 (2016).

    Article  Google Scholar 

  • 40.

    Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article  Google Scholar 

  • 41.

    Strickland, G. J. & Roberts, J. H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats. Hydrobiologia 826, 129–144 (2019).

    CAS  Article  Google Scholar 

  • 42.

    Deagle, B. E. et al. Counting with DNA metabarcoding studies: how should we convert sequence reads to dietary data? Mol. Ecol. 28, 391–406 (2019).

  • 43.

    Shogren, A. J. et al. Controls on eDNA movement in streams: transport, retention, and resuspension. Sci. Rep. 7, 5065 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Deagle, B. E. et al. Studying seabird diet through genetic analysis of faeces: a case study on Macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2, e831 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Murray, D. C., Coghlan, M. L. & Bunce, M. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS ONE 10, e0124671 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32–D37 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Paradis, E. APE 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article  Google Scholar 

  • 51.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

  • 52.

    Herve, M. RVAideMemoire, testing and plotting procedures for biostatistics. (2018).

  • Source: Ecology -

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Keeping an eye on the fusion future