in

Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands

[adace-ad id="91168"]
  • 1.

    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    Google Scholar 

  • 2.

    Loisel, J. et al. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 165, 59–80 (2017).

    CAS 

    Google Scholar 

  • 3.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

  • 4.

    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).

    CAS 

    Google Scholar 

  • 5.

    Chambers, F. M., Barber, K. E., Maddy, D. & Brew, J. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene 7, 391–399 (1997).

    Google Scholar 

  • 6.

    Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D. & Langdon, P. G. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quat. Sci. Rev. 25, 336–350 (2006).

    Google Scholar 

  • 7.

    Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

    CAS 

    Google Scholar 

  • 8.

    van der Linden, M. & van Geel, B. Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 649–667 (2006).

    Google Scholar 

  • 9.

    Clymo, R. S. The limits to peat bog growth. Philos. Trans. R. Soc. B Biol. Sci. 303, 605–654 (1984).

    Google Scholar 

  • 10.

    Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J. & de Ruiter, P. C. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179–1192 (2004).

    Google Scholar 

  • 11.

    Damman, A. W. H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30, 480–495 (1978).

    CAS 

    Google Scholar 

  • 12.

    Malmer, N. Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53, 105–120 (1988).

    CAS 

    Google Scholar 

  • 13.

    Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).

    Google Scholar 

  • 14.

    Du, E. et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos. Chem. Phys. 16, 8571–8579 (2016).

    CAS 

    Google Scholar 

  • 15.

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    CAS 

    Google Scholar 

  • 16.

    Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl. Acad. Sci. USA 103, 19386–19389 (2006).

    CAS 

    Google Scholar 

  • 17.

    Bragazza, L. et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob. Change Biol. 18, 1163–1172 (2012).

    Google Scholar 

  • 18.

    Aerts, R., Wallén, B. & Malmer, N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80, 131–140 (1992).

    Google Scholar 

  • 19.

    Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry? Glob. Biogeochem. Cycles 29, 1369–1383 (2015).

  • 20.

    Charman, D. J. et al. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quat. Sci. Rev. 121, 110–119 (2015).

    Google Scholar 

  • 21.

    Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).

    Google Scholar 

  • 22.

    Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Glob. Biogeochem. Cycles 23, GB1012 (2009).

  • 23.

    Wang, M., Moore, T. R., Talbot, J. & Richard, P. J. H. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environ. Res. Lett. 9, 024003 (2014).

    CAS 

    Google Scholar 

  • 24.

    Wang, M., Moore, T. R., Talbot, J. & Riley, J. L. The stoichiometry of carbon and nutrients in peat formation. Glob. Biogeochem. Cycles 29, 113–121 (2015).

    Google Scholar 

  • 25.

    Gorham, E. & Janssens, J. A. The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America. Wetlands 25, 259–278 (2005).

    Google Scholar 

  • 26.

    Ratcliffe, J. L. et al. Rapid carbon accumulation in a peatland following Late Holocene tephra deposition, New Zealand. Quat. Sci. Rev. 246, 106505 (2020).

    Google Scholar 

  • 27.

    Kylander, M. E. et al. Mineral dust as a driver of carbon accumulation in northern latitudes. Sci. Rep. 8, 6876 (2018).

  • 28.

    Hughes, P. D. M. et al. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quat. Sci. Rev. 67, 160–175 (2013).

    Google Scholar 

  • 29.

    Limpens, J., Berendse, F. & Klees, H. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7, 793–804 (2004).

    CAS 

    Google Scholar 

  • 30.

    Fritz, C. et al. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biol. 14, 491–499 (2012).

    CAS 

    Google Scholar 

  • 31.

    White, J. R. & Reddy, K. R. Influence of phosphorus loading on organic nitrogen mineralization of everglades soils. Soil Sci. Soc. Am. J. 64, 1525 (2000).

    CAS 

    Google Scholar 

  • 32.

    Bledsoe, R. B., Goodwillie, C. & Peralta, A. L. Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres. mSphere 5, e00035-20 (2020).

    Google Scholar 

  • 33.

    Lin, X. et al. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl. Environ. Microbiol. 80, 3518–3530 (2014).

    Google Scholar 

  • 34.

    Sjögersten, S., Cheesman, A. W., Lopez, O. & Turner, B. L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011).

    Google Scholar 

  • 35.

    Cheesman, A. W., Turner, B. L. & Ramesh Reddy, K. Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci. Soc. Am. J. 76, 1496–1506 (2012).

    CAS 

    Google Scholar 

  • 36.

    Kivimäki, S. K., Sheppard, L. J., Leith, I. D. & Grace, J. Long-term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from a Sphagnum bog in the Scottish Borders. Environ. Exp. Bot. 90, 53–61 (2013).

    Google Scholar 

  • 37.

    Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C. & Bubier, J. L. The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma 343, 176–186 (2019).

    CAS 

    Google Scholar 

  • 38.

    Hill, B. H. et al. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120, 203–224 (2014).

    CAS 

    Google Scholar 

  • 39.

    Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. In The Nitrogen Cycle at Regional to Global Scales (eds. Boyer, E. W. & Howarth, R. W.) 1–45 (Springer Netherlands, 2002).

  • 40.

    Larmola, T. et al. Methanotrophy induces nitrogen fixation during peatland development. Proc. Natl. Acad. Sci. USA 111, 734–739 (2014).

    CAS 

    Google Scholar 

  • 41.

    van den Elzen, E. et al. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences 14, 1111–1122 (2017).

    Google Scholar 

  • 42.

    van den Elzen, E., Bengtsson, F., Fritz, C., Rydin, H. & Lamers, L. P. M. Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS ONE 15, e0228383 (2020).

    Google Scholar 

  • 43.

    Toberman, H. et al. Dependence of ombrotrophic peat nitrogen on phosphorus and climate. Biogeochemistry 125, 11–20 (2015).

    CAS 

    Google Scholar 

  • 44.

    Basilier, K., Granhall, U., Stenström, T.-A. & Stenstrom, T.-A. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31, 236 (1978).

    CAS 

    Google Scholar 

  • 45.

    Lin, X. et al. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl. Environ. Microbiol. 80, 3531–3540 (2014).

    Google Scholar 

  • 46.

    Kox, M. A. R. et al. Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant Soil 406, 83–100 (2016).

    CAS 

    Google Scholar 

  • 47.

    Bubier, J. L., Moore, T. R. & Bledzki, L. A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 13, 1168–1186 (2007).

    Google Scholar 

  • 48.

    Fritz, C., Lamers, L. P. M., Riaz, M., van den Berg, L. J. L. & Elzenga, T. J. T. M. Sphagnum mosses – masters of efficient N-uptake while avoiding intoxication. PLoS ONE 9, e79991 (2014).

    Google Scholar 

  • 49.

    Morris, P. J. et al. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl. Acad. Sci. USA 115, 4851–4856 (2018).

    CAS 

    Google Scholar 

  • 50.

    Schillereff, D. N. et al. Long-term macronutrient stoichiometry of UK ombrotrophic peatlands. Sci. Total Environ. 572, 1561–1572 (2016).

    CAS 

    Google Scholar 

  • 51.

    Sjöström, J. K. et al. Paleodust deposition and peat accumulation rates – bog size matters. Chem. Geol. 554, 119795 (2020).

    Google Scholar 

  • 52.

    Kylander, M. E. et al. Potentials and problems of building detailed dust records using peat archives: an example from Store Mosse (the “Great Bog”), Sweden. Geochim. Cosmochim. Acta 190, 156–174 (2016).

    CAS 

    Google Scholar 

  • 53.

    Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22, 1–19 (2008).

    Google Scholar 

  • 54.

    Tipping, E. et al. Atmospheric deposition of phosphorus to land and freshwater. Environ. Sci.: Processes Impacts 16, 1608–1617 (2014).

    CAS 

    Google Scholar 

  • 55.

    Wang, R. et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 8, 48–54 (2015).

    CAS 

    Google Scholar 

  • 56.

    Newman, E. I. Phosphorus inputs to terrestrial ecosystems. J. Ecol. 83, 713–726 (1995).

    Google Scholar 

  • 57.

    Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P. & Rose, R. The total phosphorus budget of a peat-covered catchment. J. Geophys. Res. Biogeosci. 121, 1814–1828 (2016).

    CAS 

    Google Scholar 

  • 58.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Google Scholar 

  • 59.

    Bedford, B. L., Walbridge, M. R. & Aldous, A. Patterns in nutrient availability and plant diversity of temperate North American Wetlands. Ecology 80, 2151–2169 (1999).

    Google Scholar 

  • 60.

    Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance: Tansley review. New Phytol. 164, 243–266 (2004).

    Google Scholar 

  • 61.

    Yan, J. et al. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. J. Environ. Sci. 42, 152–162 (2016).

    CAS 

    Google Scholar 

  • 62.

    Barrow, N. J. Comparing two theories about the nature of soil phosphate. Eur. J. Soil Sci. 72, 679–685 (2021).

    CAS 

    Google Scholar 

  • 63.

    Bridgham, S. D., Pastor, J., Janssens, J. A., Chapin, C. & Malterer, T. J. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16, 45–65 (1996).

    Google Scholar 

  • 64.

    Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).

    Google Scholar 

  • 65.

    Kuhry, P., Halsey, L. A., Bayley, S. E. & Vitt, D. H. Peatland development in relation to Holocene climatic change in Manitoba and Saskatchewan (Canada). Can. J. Earth Sci. 29, 1070–1090 (1992).

    CAS 

    Google Scholar 

  • 66.

    Malmer, N. & Wallén, B. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14, 111–117 (2004).

    Google Scholar 

  • 67.

    Malmer, N. & Holm, E. Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos 43, 171–182 (1984).

    CAS 

    Google Scholar 

  • 68.

    Larsson, A., Segerstrom, U., Laudon, H. & Nilsson, M. Holocene carbon and nitrogen accumulation rates and contemporary carbon export in discharge: a study from a boreal fen catchment. Holocene 27, 48 (2016), https://doi.org/10.1177/0959683616675936.

  • 69.

    Berendse, F. et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob. Change Biol. 7, 591–598 (2001).

    Google Scholar 

  • 70.

    Juutinen, S., Bubier, J. L. & Moore, T. R. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue bog. Ecosystems 13, 874–887 (2010).

    CAS 

    Google Scholar 

  • 71.

    Lequy, É., Legout, A., Conil, S. & Turpault, M. P. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles. Atmos. Environ. 80, 281–289 (2013).

    CAS 

    Google Scholar 

  • 72.

    Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Glob. Biogeochem. Cycles 19, GB4S04 (2005).

  • 73.

    Yu, Z. Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. The Holocene 21, 761–774 (2011).

    Google Scholar 

  • 74.

    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry. (Elsevier, Amsterdam, 2013).

    Google Scholar 

  • 75.

    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

  • 76.

    Larmola, T. et al. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).

    Google Scholar 

  • 77.

    Li, F. et al. Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles. Environ. Sci. Technol. 55, 5815–5825 (2021).

    CAS 

    Google Scholar 

  • 78.

    Spohn, M. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob. Change Biol. 26, 4169–4177 (2020).

    Google Scholar 

  • 79.

    Sjöström, J. Mid-Holocene Mineral Dust Deposition in Raised Bogs in Southern Sweden: Processes and Links. PhD thesis, Stockholm Univ. (2021).

  • 80.

    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    CAS 

    Google Scholar 

  • 81.

    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).

    CAS 

    Google Scholar 

  • 82.

    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    CAS 

    Google Scholar 

  • 83.

    Clymo, R. S. & Bryant, C. L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 72, 2048–2066 (2008).

    CAS 

    Google Scholar 

  • 84.

    Morris, P. J., Waddington, J. M., Benscoter, B. W. & Turetsky, M. R. Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model. Ecohydrology 4, 1–11 (2011).

    Google Scholar 

  • 85.

    Rydin, H. & Jeglum, J. The Biology of Peatlands (Oxford University Press, 2013).

  • 86.

    Limpens, J., Heijmans, M. M. P. D. & Berendse, F. The nitrogen cycle in boreal peatlands. Boreal Peatl. Ecosyst. 188, 195–230 (2006).

    CAS 

    Google Scholar 

  • 87.

    Biester, H., Knorr, K.-H., Schellekens, J., Basler, A. & Hermanns, Y.-M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).

    CAS 

    Google Scholar 

  • 88.

    Zaccone, C., Plaza, C., Ciavatta, C., Miano, T. M. & Shotyk, W. Advances in the determination of humification degree in peat since: Applications in geochemical and paleoenvironmental studies. Earth-Sci. Rev. 185, 163–178 (2018).

    CAS 

    Google Scholar 

  • 89.

    Alboukadel Kassambara. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (CRAN, 2020).

  • 90.

    Legendre, P. & Oksanen, J. lmodel2: Model II Regression. R package version 1.7–3. https://CRAN.R-project.org/package=lmodel2 (CRAN, 2018).

  • 91.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 92.

    Tipping, E. et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci. Rep. 7, 1890 (2017).

    CAS 

    Google Scholar 

  • 93.

    Bragazza, L. & Limpens, J. Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Glob. Biogeochem. Cycles 18, GB4018 (2004).

  • 94.

    Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, 1–12 (2004).

    Google Scholar 

  • 95.

    Lund, M., Christensen, T. R., Mastepanov, M., Lindroth, A. & Ström, L. Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences 6, 2135–2144 (2009).

    CAS 

    Google Scholar 

  • 96.

    Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria