in

Phylogeography and morphological evolution of Pseudechiniscus (Heterotardigrada: Echiniscidae)

[adace-ad id="91168"]
  • 1.

    Gross, V. et al. Miniaturization of tardigrades (water bears): Morphological and genomic perspectives. Arthr. Struct. Dev. 48, 12–19 (2019).

    Article 

    Google Scholar 

  • 2.

    Møbjerg, N. et al. Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol. 202, 409–420 (2011).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Giribet, G. & Edgecombe, G. D. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57, 455–466 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Campbell, L. I. et al. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc. Natl Acad. Sci. USA 108, 15920–15924 (2011).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 5.

    Jørgensen, A., Møbjerg, N. & Kristensen, R. M. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) – an investigation of the congruence between molecules and morphology. J. Zool. Syst. Evol. Res. 49(Suppl. 1), 6–16 (2011).

    Article 

    Google Scholar 

  • 6.

    Bertolani, R. et al. Phylogeny of Eutardigrada: new molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phyl. Evol. 76, 110–126 (2014).

    Article 

    Google Scholar 

  • 7.

    Fujimoto, S., Jørgensen, A. & Hansen, J. G. A. molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada). Zool. Scr. 46, 496–505 (2017).

    Article 

    Google Scholar 

  • 8.

    Gąsiorek, P., Stec, D., Morek, W. & Michalczyk, Ł. Deceptive conservatism of claws: distinct phyletic lineages concealed within Isohypsibioidea (Eutardigrada) revealed by molecular and morphological evidence. Contrib. Zool. 88, 78–132 (2019).

    Article 

    Google Scholar 

  • 9.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Ann. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 10.

    Bartels, P. J., Apodaca, J. J., Mora, C. & Nelson, D. R. A global biodiversity estimate of a poorly known taxon: phylum Tardigrada. Zool. J. Linn. Soc. 178, 730–736 (2016).

    Article 

    Google Scholar 

  • 11.

    McInnes, S. J. Zoogeographic distribution of terrestrial/freshwater tardigrades from current literature. J. Nat. Hist. 28, 257–352 (1994).

    Article 

    Google Scholar 

  • 12.

    Morek, W., Stec, D., Gąsiorek, P., Surmacz, B. & Michalczyk, Ł. Milnesium tardigradum Doyère, 1840: The first integrative study of interpopulation variability in a tardigrade species. J. Zool. Syst. Evol. Res. 57, 1–23 (2019).

    Article 

    Google Scholar 

  • 13.

    Gąsiorek, P., Blagden, B. & Michalczyk, Ł. Towards a better understanding of echiniscid intraspecific variability: A redescription of Nebularmis reticulatus (Murray, 1905) (Heterotardigrada: Echiniscoidea). Zool. Anz. 283, 242–255 (2019).

    Article 

    Google Scholar 

  • 14.

    Gąsiorek, P. et al. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biol. J. Linn. Soc. 128, 789–805 (2019).

    Google Scholar 

  • 15.

    Cesari, M., McInnes, S. J., Bertolani, R., Rebecchi, L. & Guidetti, R. Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada : Hypsibiidae) – evidence that it is a truly pan-Antarctic species. Invertebr. Syst. 30, 635–649 (2016).

    Article 

    Google Scholar 

  • 16.

    Guidetti, R., McInnes, S. J., Cesari, M., Rebecchi, L. & Rota-Stabelli, O. Evolutionary scenarios for the origin of an Antarctic tardigrade species based on molecular clock analyses and biogeographic data. Contrib. Zool. 86, 97–110 (2017).

    Article 

    Google Scholar 

  • 17.

    Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716 (2020).

    Article 

    Google Scholar 

  • 18.

    Thulin, G. Beiträge zur Kenntnis der Tardigradenfauna Schwedens. Ark. Zool. 7, 1–60 (1911).

    Google Scholar 

  • 19.

    Kristensen, R. M. Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In Biology of Tardigrada (ed. Bertolani, R.) 261–335 (U.Z.I. Modena, 1987).

    Google Scholar 

  • 20.

    Vecchi, M. et al. Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea. Invertebr. Syst. 30, 303–322 (2016).

    Article 

    Google Scholar 

  • 21.

    Cesari, M. et al. An integrated study of the biodiversity within the Pseudechiniscus suillus–facettalis group (Heterotardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 717–732 (2020).

    Google Scholar 

  • 22.

    Tumanov, D. V. Analysis of non-morphometric morphological characters used in the taxonomy of the genus Pseudechiniscus (Tardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 753–775 (2020).

    Google Scholar 

  • 23.

    Grobys, D. et al. High diversity in the Pseudechiniscus suillus–facettalis complex (Heterotardigrada: Echiniscidae) with remarks on the morphology of the genus Pseudechiniscus. Zool. J. Linn. Soc. 188, 733–752 (2020).

    Article 

    Google Scholar 

  • 24.

    Roszkowska, M. et al. Integrative description of five Pseudechiniscus species (Heterotardigrada: Echiniscidae: the suillus-facettalis complex). Zootaxa 4763, 451–484 (2020).

    Article 

    Google Scholar 

  • 25.

    Gąsiorek, P. et al. New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalise a pseudocryptic horn of plenty. Zool. J. Linn. Soc. (in press).

  • 26.

    Fontoura, P. & Morais, P. Assessment of traditional and geometric morphometrics for discriminating cryptic species of the Pseudechiniscus suillus complex (Tardigrada, Echiniscidae). J. Zool. Syst. Evol. Res. 49(Suppl. 1), 26–33 (2011).

    Article 

    Google Scholar 

  • 27.

    Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol. Phyl. Evol. 56, 848–850 (2010).

    Article 

    Google Scholar 

  • 28.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder- event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article 

    Google Scholar 

  • 29.

    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 31.

    Rocha, A., Doma, I., Gonzalez-Reyes, A. & Lisi, O. Two new tardigrade species (Echiniscidae, Doryphoribiidae) from Salta province (Argentina). Zootaxa 4878, 267–286 (2020).

    Article 

    Google Scholar 

  • 32.

    Ehrenberg, C. G. Diagnoses novarum formarum. Verhandl. König. Preuss. Akad. Wiss Berlin 8, 526–533 (1853).

    Google Scholar 

  • 33.

    Mihelčič, F. Zwei neue Tardigradenarten aus Spanien. Zool. Anz. 155, 309–311 (1955).

    Google Scholar 

  • 34.

    Mihelčič, F. Beitrag zur Systematik de Tardigraden . Arch. Zool. Ital. 36, 57–103 (1951).

    Google Scholar 

  • 35.

    Iharos, A. Zwei neue Tardigraden-Arten. Zool. Anz. 115, 218–220 (1936).

    Google Scholar 

  • 36.

    Murray, J. Some South African Tardigrada. J. R. Microsc. Soc. 12, 515–524 (1907).

    Article 

    Google Scholar 

  • 37.

    Yang, T. Three new species and one new record of the Tardigrada from China. Acta Hydrobiol. Sin. 26, 504–507 (2002).

    Google Scholar 

  • 38.

    Mihelčič, F. Beiträge zur Kenntnis der Tardigrada Jugoslawiens. Zool. Anz. 121, 95–96 (1938).

    Google Scholar 

  • 39.

    Bartoš, E. Eine neue Tardigradenart aus der Tschechoslowakei. Zool. Anz. 106, 175–176 (1934).

    Google Scholar 

  • 40.

    Richters, F. Beitrag zur Kenntnis der Moosfauna Australiens und der Inseln des Pazifischen Ozeans. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere 26, 196–213 (1908).

    Google Scholar 

  • 41.

    Vončina, K., Kristensen, R. M. & Gąsiorek, P. Pseudechiniscus in Japan: re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Zoosyst. Evol. 96, 527–536 (2020).

    Article 

    Google Scholar 

  • 42.

    Wang, L. Tardigrades from the Yunnan-Guizhou Plateau (China) with description of two new species in the genera Mixibius (Eutardigrada: Hypsibiidae) and Pseudechiniscus (Heterotardigrada: Echiniscidae). J. Nat. Hist. 43, 2553–2570 (2009).

    Article 

    Google Scholar 

  • 43.

    Hulings, N. C. & Gray, J. S. A manual for the study of meiofauna. Smithson. Contrib. Zool. 78, 1–84 (1971).

    Google Scholar 

  • 44.

    Gąsiorek, P. & Michalczyk, Ł. Revised Cornechiniscus (Heterotardigrada) and new phylogenetic analyses negate echiniscid subfamilies and tribes. R. Soc. Open Sci. 7, 200581 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 45.

    Dastych, H. Notes on the revision of the genus Mopsechiniscus (Tardigrada). Zool. Anz. 240, 299–308 (2001).

    Article 

    Google Scholar 

  • 46.

    Rebecchi, L., Altiero, T., Eibye-Jacobsen, J., Bertolani, R. & Kristensen, R. M. A new discovery of Novechiniscus armadilloides (Schuster, 1975) (Tardigrada, Echiniscidae) from Utah, USA with considerations on non-marine Heterotardigrada phylogeny and biogeography. Org. Divers. Evol. 8, 58–65 (2008).

    Article 

    Google Scholar 

  • 47.

    Binda, M. G. & Kristensen, R. M. Notes on the genus Oreella (Oreellidae) and the systematic position of Carphania fluviatilis Binda, 1978 (Carphaniidae fam. nov., Heterotardigrada). Animalia 13, 9–20 (1986).

    Google Scholar 

  • 48.

    Binda, M. G. Risistemazione di alcuni Tardigradi con l’instituzione di un nuovo genere di Oreellidae e della nuova famiglia Archechiniscidae. Animalia 5, 307–314 (1978).

    Google Scholar 

  • 49.

    Kristensen, R. M. & Hallas, T. E. The tidal genus Echiniscoides and its variability, with erection of Echiniscoididae fam. n. (Tardigrada). Zool. Scr. 9, 113–127 (1980).

    Article 

    Google Scholar 

  • 50.

    Møbjerg, N., Kristensen, R. M. & Jørgensen, A. Data from new taxa infer Isoechiniscoides gen. nov. and increase the phylogenetic and evolutionary understanding of echiniscoidid tardigrades (Echiniscoidea: Tardigrada). Zool. J. Linn. Soc. 178, 804–818 (2016).

    Article 

    Google Scholar 

  • 51.

    Møbjerg, N., Jørgensen, A. & Kristensen, R. M. Ongoing revision of Echiniscoididae (Heterotardigrada: Echiniscoidea), with the description of a new interstitial species and genus with unique anal structures. Zool. J. Linn. Soc. 188, 663–680 (2020).

    Article 

    Google Scholar 

  • 52.

    Gąsiorek, P., Suzuki, A. C., Kristensen, R. M., Lachowska-Cierlik, D. & Michalczyk, Ł. Untangling the Echiniscus Gordian knot: Stellariscus gen. nov. (Heterotardigrada: Echiniscidae) from Far East Asia. Invertebr. Syst. 32, 1234–1247 (2018).

    Article 

    Google Scholar 

  • 53.

    Dastych, H. Echiniscus rackae sp. n., a new species of Tardigrada from the Himalayas. Entomol. Mitt. Zool. Mus. Hamburg 8, 246–250 (1986).

    Google Scholar 

  • 54.

    McInnes, S. J. Tardigrades from Signy Island, South Orkney Islands, with particular reference to freshwater species. J. Nat. Hist. 29, 1419–1445 (1995).

    Article 

    Google Scholar 

  • 55.

    Dastych, H. Two new species of Tardigrada from the Canadian Subarctic with some notes on sexual dimorphism in the family Echiniscidae. Entomol. Mitt. Zool. Mus. Hamburg 8, 319–334 (1987).

    Google Scholar 

  • 56.

    Pilato, G., Binda, M. G. & Lisi, O. Remarks on some Echiniscidae (Heterotardigrada) from New Zealand with the description of two new species. Zootaxa 1027, 27–45 (2005).

    Article 

    Google Scholar 

  • 57.

    Pilato, G., Binda, M. G., Napolitano, A. & Moncada, E. Notes on South American tardigrades with the description of two new species: Pseudechiniscus spinerectus and Macrobiotus danielae. Trop. Zool. 14, 223–231 (2001).

    Article 

    Google Scholar 

  • 58.

    Fontoura, P., Pilato, G. & Lisi, O. First record of Tardigrada from São Tomé (Gulf of Guinea, Western Equatorial Africa) and description of Pseudechiniscus santomensis sp. nov. (Heterotardigrada: Echiniscidae). Zootaxa 2564, 31–42 (2010).

    Article 

    Google Scholar 

  • 59.

    Bartoš, E. Die Tardigraden der Chinesischen und Javanischen Moosproben. Acta Soc. Zool. Bohem. 27, 108–114 (1963).

    Google Scholar 

  • 60.

    Beijerinck, M.W. De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen. Amsterdam: Müller (1913).

  • 61.

    Baas-Becking, L. G. M. Geobiologie of inleiding tot de milieukunde (W.P. Van Stockum & Zoon, 1934).

    Google Scholar 

  • 62.

    Wallace, A. R. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Macmillan and Company, 1876).

    Google Scholar 

  • 63.

    Niedbała, W. The ptyctimous mites fauna of the Oriental and Australian regions and their centres of origin (Acari: Oribatida). Genus Suppl. 10, 1–493 (2000).

    Google Scholar 

  • 64.

    Niedbała, W. Ptyctimous mites (Acari: Oribatida) of South Africa. Ann. Zool. 56(Suppl. 1), 1–97 (2006).

    Google Scholar 

  • 65.

    Janion-Scheepers, C., Deharveng, L., Bedos, A. & Chown, S. Updated list of Collembola species currently recorded from South Africa. ZooKeys 503, 55–88 (2015).

    Article 

    Google Scholar 

  • 66.

    Kisielewski, J. Inland-water Gastrotricha from Brazil. Ann. Zool. 43(Suppl. 2), 1–168 (1991).

    Google Scholar 

  • 67.

    Tuxen, S. L. Ecology and zoogeography of the Brazilian Protura (Insecta). Stud. Neotrop. Fauna Environ. 12, 225–247 (1977).

    Article 

    Google Scholar 

  • 68.

    Greenslade, P. Why are there so many exotic springtails in Australia? A review. Soil Org. 90, 141–156 (2018).

    Google Scholar 

  • 69.

    Smit, H. Australian water mites of the subfamily Notoaturinae Besch (Acari: Hydrachnidia: Aturidae), with the description of 24 new species. Int. J. Acarol. 36, 101–146 (2010).

    Article 

    Google Scholar 

  • 70.

    Moir, M. L., Brennan, K. E. C. & Harvey, M. S. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. J. Biogeogr. 36, 1958–1971 (2009).

    Article 

    Google Scholar 

  • 71.

    Harvey, M. S., Abrams, K. M., Beavis, A. S., Hillyer, M. J. & Huey, J. A. Pseudoscorpions of the family Feaellidae (Pseudoscorpiones: Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism. Invertebr. Syst. 30, 491–508 (2016).

    Article 

    Google Scholar 

  • 72.

    Claxton, S.K. The taxonomy and distribution of Australian terrestrial tardigrades. PhD thesis, Macquarie University: Sydney (2004).

  • 73.

    Simpson, G. G. Tempo and mode in evolution (Columbia University Press, 1944).

    Google Scholar 

  • 74.

    Dastych, H. The Tardigrada of Poland. Monogr. Faun. Pol. 16, 1–255 (1988).

    Google Scholar 

  • 75.

    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 76.

    Petersen, B. The tardigrade fauna of Greenland. Medd. Grønl. 150, 1–94 (1951).

    Google Scholar 

  • 77.

    de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).

    Article 

    Google Scholar 

  • 79.

    Casquet, J. T., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12, 136–141 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Stec, D., Kristensen, R.M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134 (2020).

  • 81.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • 82.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 14, 587–589 (2017).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    Article 

    Google Scholar 

  • 90.

    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Suchard, M.A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus Evol. 4, vey016 (2018).

  • 93.

    Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. Tracer v1.6 (2014). Available from http://beast.bio.ed.ac.uk/Tracer.

  • 94.

    Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Ferreira, M. A. R. & Suchard, M. A. (2008) Bayesian analysis of elapsed times in continuous-time Markov chains. Can. J. Stat. 36, 355–368 (2008).

    MATH 
    Article 

    Google Scholar 

  • 96.

    Münkemüller, T. et al. How to measure and test phylogenetic signal. Meth. Ecol. Evol. 3, 743–756 (2012).

    Article 

    Google Scholar 

  • 97.

    Yu, Y., Harris, A. J., Blair, C. & He, X. J. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phyl. Evol. 87, 46–49 (2015).

    Article 

    Google Scholar 

  • 98.

    Yu, Y., Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Jombart, T., Balloux, F. & Dray, S. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 1907–1909 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).

    Article 

    Google Scholar 

  • 103.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • 104.

    Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • 106.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 107.

    Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 108.

    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72 (2008).

    Article 

    Google Scholar 

  • 109.

    Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).

    Article 

    Google Scholar 

  • 110.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020).


  • Source: Ecology - nature.com

    Author Correction: Detection of untreated sewage discharges to watercourses using machine learning

    Genetic diversity and population structure of razor clam Sinonovacula constricta in Ariake Bay, Japan, revealed using RAD-Seq SNP markers