in

Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains

[adace-ad id="91168"]
  • 1.

    Ramírez-Llodrà, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Hein, J. R. & Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. in Treatise on Geochemistry (eds. Holland, H. & Turekian, K.) vol. 13 273–291 (Elsevier Ltd., 2014).

  • 3.

    Hein, J. R. Manganese nodules. Encyclop. Mar. Geosci. 1, 408–412 (2016).

    Google Scholar 

  • 4.

    Kuhn, T., Wegorzewski, A. V., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. in Deep-Sea Mining (ed. Sharma, R.) 23–63 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.

  • 5.

    Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion–Clipperton Zone. Sci. Rep. 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Purser, A. et al. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 26, R1268–R1269 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Vanreusel, A., Hilário, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Aberle, N. & Witte, U. Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: In situ pulse-chase experiments using 13C-labelled phytodetritus. Mar. Ecol. Prog. Ser. 251, 37–47 (2003).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Sweetman, A. K. & Witte, U. Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar. Ecol. Prog. Ser. 355, 73–84 (2008).

    ADS 
    Article 

    Google Scholar 

  • 11.

    van Oevelen, D., Soetaert, K. & Heip, C. H. R. Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnol. Oceanogr. 57, 645–664 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).

    ADS 
    Article 

    Google Scholar 

  • 13.

    de Jonge, D. S. W. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).

    Article 

    Google Scholar 

  • 14.

    Smith, C. R., De Léo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    van der Zee, E. M. et al. How habitat-modifying organisms structure the food web of two coastal ecosystems. Proc. R. Soc. B Biol. Sci. 283, 20152326 (2016).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediment (Springer, 2009).

    Google Scholar 

  • 18.

    Hall, S. J. & Raffaelli, D. G. Food webs: Theory and reality. Adv. Ecol. Res. 24, 187–239 (1993).

    Article 

    Google Scholar 

  • 19.

    Mahatma, R. Meiofauna communities of the Pacific nodule province: Abundance, diversity and community structure. PhD-Thesis (Carl von Ossietzky Universität Oldenburg, 2009).

  • 20.

    McIntyre, A. Ecoloy of marine meiobenthos. Biol. Rev. 44, 245–288 (1969).

    Article 

    Google Scholar 

  • 21.

    Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, Southeast Pacific, revisited 7 years after the experimental impact. Deep. Res. II(48), 3809–3839 (2001).

    ADS 

    Google Scholar 

  • 22.

    Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Roberts, D. & Moore, H. M. Tentacular diversity in deep-sea deposit-feeding holothurians: Implications for biodiversity in the deep sea. Biodivers. Conserv. 6, 1487–1505 (1997).

    Article 

    Google Scholar 

  • 24.

    Buhl-Mortensen, L. et al. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia 685, 191–219 (2012).

    Article 

    Google Scholar 

  • 25.

    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Hasemann, C. et al. Effects of dropstone-induced habitat heterogeneity on Arctic deep-sea benthos with special reference to nematode communities. Mar. Biol. Res. 9, 229–245 (2013).

    Article 

    Google Scholar 

  • 27.

    Riehl, T., Wölfl, A. C., Augustin, N., Devey, C. W. & Brandt, A. Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proc. Natl. Acad. Sci. USA. 117, 15450–15459 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Kidd, R. B., Huggett, J. & Huggett, Q. J. Rock debris on abyssal plains in the northeast Atlantic: A comparison of epibenthic sledge hauls and photographic surveys. Oceanol. Acta 4, 99–104 (1981).

    Google Scholar 

  • 29.

    Gooday, A. J., Goineau, A. & Voltski, I. Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion-Clipperton Fracture Zone: A preliminary description and comparison with North Atlantic dropstone assemblages. Mar. Biodivers. 45, 391–412 (2015).

    Article 

    Google Scholar 

  • 30.

    Ziegler, A. F., Smith, C. R., Edwards, K. F. & Vernet, M. Glacial dropstones: Islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar. Ecol. Prog. Ser. 583, 1–14 (2017).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biol. 33, 1359–1369 (2010).

    Article 

    Google Scholar 

  • 32.

    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).

    Article 

    Google Scholar 

  • 33.

    Ilan, M., Ben-Eliahu, M. N. & Galil, B. Three deep water sponges from the eastern Mediterranean and their associated Fauna. Ophelia 39, 45–54 (1994).

    Article 

    Google Scholar 

  • 34.

    Beaulieu, S. E. Colonization of habitat islands in the deep sea: Recruitment to glass sponge stalks. Deep. Res. I(48), 1121–1137 (2001).

    Article 

    Google Scholar 

  • 35.

    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Huston, M. A. Introduction. in Biological Diversity. The coexistence of species on changing landscapes 1–11 (Cambridge University Press, 1994).

  • 37.

    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).

    Article 

    Google Scholar 

  • 38.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar 

  • 39.

    Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. B Biol. Sci. 268, 2039–2045 (2001).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Warren, P. H. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311 (1989).

    Article 

    Google Scholar 

  • 41.

    Van Dover, C. L. et al. Biodiversity loss from deep-sea mining. Nat. Geosci. 10, 464–465 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 00195 (2018).

    Article 

    Google Scholar 

  • 43.

    Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).

    Article 

    Google Scholar 

  • 44.

    Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909-3912.e3 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Ramírez-Llodrà, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS 
    Article 

    Google Scholar 

  • 47.

    International Seabed Authority. Regulations on prospecting and exploration for polymetallic nodules in the Area. (2000).

  • 48.

    Stratmann, T. et al. Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences 15, 4131–4145 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Soetaert, K. & van Oevelen, D. Modeling food web interactions in benthic deep-sea ecosystems: A practical guide. Oceanography 22, 128–143 (2009).

    Article 

    Google Scholar 

  • 50.

    van Oevelen, D. et al. Quantifying food web flows using linear inverse models. Ecosystems 13, 32–45 (2010).

    Article 

    Google Scholar 

  • 51.

    International Seabed Authority. Draft environmental management plan for the Clarion-Clipperton Zone I. 1–18 (International Seabed Authority, 2011).

  • 52.

    Jung, H.-S., Lee, C.-B., Jeong, K.-S. & Kang, J.-K. Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Mar. Geol. 144, 295–309 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Wedding, L. M. et al. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Hannides, A. K. & Smith, C. R. The Northeast Pacific abyssal plain. in Biogeochemistry of Marine Systems (eds. Black, K. D. & Shimmield, G. B.) 208–237 (Blackwell Publishing, 2003).

  • 55.

    International Seabed Authority. A geological model of polymetallic nodule deposits in the Clarion Clipperton Fracture Zone. ISA technical study No. 6. (2010).

  • 56.

    Schoening, T., Jones, D. O. B. & Greinert, J. Compact-morphology-based polymetallic nodule delineation. Sci. Rep. 7, 13338 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Anonymous. Google Earth. https://www.google.com/earth/ (2018).

  • 58.

    Klein, H. Near-bottom currents in the deep Peru Basin, DISCOL experimental area. Dtsch. Hydrogr. Z. 45, 31–42 (1993).

    Article 

    Google Scholar 

  • 59.

    Bharatdwaj, K. Reliefs of the ocean basins. in Physical Geography (Oceanography) 1–53 (Discovery Publishing House, 2006).

  • 60.

    Glasby, G. P. Manganese: Predominant role of nodules and crusts. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 371–427 (Springer-Verlag, 2006). https://doi.org/10.1007/3-540-32144-6_11.

  • 61.

    Haeckel, M., König, I., Riech, V., Weber, M. E. & Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep. Res. I(48), 3713–3736 (2001).

    ADS 

    Google Scholar 

  • 62.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Thiel, H. Use and protection of the deep sea: An introduction. Deep. Res. II(48), 3427–3431 (2001).

    ADS 

    Google Scholar 

  • 64.

    Anthropogenic disturbances in the deep sea. (Frontiers Media SA, 2019). https://doi.org/10.3389/978-2-88963-288-6.

  • 65.

    Assessing environmental impacts of deep-sea mining – revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences (2018).

  • 66.

    Martínez Arbizu, P. & Haeckel, M. RV SONNE Fahrtbericht/Cruise Report SO239. EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems. vol. 25 (2015).

  • 67.

    Boetius, A. RV SONNE SO242/2. Cruise Report/Fahrtbericht. DISCOL revisited. Guayaquil: 28 August 2015: Guayaquil: 1 October 2015. SO242/2: JPI Oceans Ecological Aspects of Deep-Sea Mining. (2015).

  • 68.

    Horton, T. et al. World Register of Marine Species (WoRMS). http://www.marinespecies.org (2018). https://doi.org/10.14284/170.

  • 69.

    Ahnert, A. & Schriever, G. Response of abyssal copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep. Res. II 48, 3779–3794 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Radziejewska, T. Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int. Rev. Hydrobiol. 87, 457–477 (2002).

    Article 

    Google Scholar 

  • 71.

    Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep. Res. II 45, 55–81 (1998).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae