in

Proposal for an initial screening method for identifying microplastics in marine sediments

[adace-ad id="91168"]
  • 1.

    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025,22001295 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Cauwenberghe, V. L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013,24035457 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655. https://doi.org/10.1021/es400663f,23692270 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Rodrigues, J. P., Duarte, A. C., Santos-Echeandía, J. & Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 111, 252–260. https://doi.org/10.1016/j.trac.2018.11.038 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Martins, I., Rodríguez, Y. & Pham, C. K. Trace elements in microplastics stranded on beaches of remote islands in the NE Atlantic. Mar. Pollut. Bull. 156, 111270. https://doi.org/10.1016/j.marpolbul.2020.111270 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Alomar, C., Estarellas, F. & Deudero, S. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res. 115, 1–10. https://doi.org/10.1016/j.marenvres.2016.01.005,26803229 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031,23545014 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025,19481226 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Pakula, C. & Stamminger, R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic. 3, 365–382. https://doi.org/10.1007/s12053-009-9072-8 (2010).

    Article 

    Google Scholar 

  • 13.

    Belzagui, F., Crespi, M., Álvarez, A., Gutiérrez-Bouzán, C. & Vilaseca, M. Microplastics’ emissions: Microfibers’ detachment from textile garments. Environ. Pollut. 248, 1028–1035. https://doi.org/10.1016/j.envpol.2019.02.059,31091635 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L. & Leusch, F. D. L. Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Sci. Total Environ. 713, 136356. https://doi.org/10.1016/j.scitotenv.2019.136356 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Fadare, O. O. & Okoffo, E. D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279. https://doi.org/10.1016/j.scitotenv.2020.140279 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076. https://doi.org/10.1021/acs.est.5b00492,25901760 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 4, 258–267. https://doi.org/10.1021/acs.estlett.7b00164 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Claessens, M., Meester, S., Landuyt, V. L., Clerck, K. & Janssen, C. R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62, 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030,21802098 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209. https://doi.org/10.1016/j.marpolbul.2015.01.015,25682567 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026,26455785 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Majewsky, M., Bitter, H., Eiche, E. & Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 568, 507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017,27333470 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Shim, W. J., Song, Y. K., Hong, S. H. & Jang, M. Identification and quantification of microplastics using Nile red staining. Mar. Pollut. Bull. 113, 469–476. https://doi.org/10.1016/j.marpolbul.2016.10.049,28340965 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Lv, L. et al. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes – safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Environ. Pollut. 255, 113283. https://doi.org/10.1016/j.envpol.2019.113283 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Cauwenberghe, V. L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Isobe, A. et al. An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. Mar. Pollut. Bull. 146, 831–837. https://doi.org/10.1016/j.marpolbul.2019.07.033,31426225 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Uddin, S., Fowler, S. W., Saeed, T., Naji, A. & Al-Jandal, N. Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. Mar. Pollut. Bull. 158, 111374. https://doi.org/10.1016/j.marpolbul.2020.111374 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Vermeiren, P., Muñoz, C. & Ikejima, K. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut. 262, 114298. https://doi.org/10.1016/j.envpol.2020.114298 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Coppock, R. L., Cole, M., Lindeque, P. K., Queirós, A. M. & Galloway, T. S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 230, 829–837. https://doi.org/10.1016/j.envpol.2017.07.017 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Ankley, G. T., Di Toro, D. M., Hansen, D. J. & Berry, W. J. Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem. 15, 2056–2066. https://doi.org/10.1002/etc.5620151202 (1996).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Japanese Geotechnical Society (JGS) 0131 (JIS A1204). Test method for particle size distribution of soils (2009).

  • 31.

    Japanese Geotechnical Society JGS 0121(JIS A1203). Test method for water content of soils (2009).

  • 32.

    BS ISO 11277: Soil quality. Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation (2009).

  • 33.

    BS ISO 1377:Part 2: Clause 3.2: Determination of the moisture content of soils (1990).

  • 34.

    BS EN 933-2: Tests for geometrical properties of aggregates. Determination of particle size distribution. Test sieves, nominal size of apertures (2020).

  • 35.

    ASTM D6913/D6913M – 17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (2004).

  • 36.

    ASTM D2216 – 19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (2019).

  • 37.

    Maxwell, S. H., Melinda, K. F. & Matthew, G. Counterstaining to separate Nile red-stained microplastic particles from terrestrial invertebrate biomass. Environ. Sci. Technol. 54, 5580–5588. https://doi.org/10.1021/acs.est.0c00711 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Ehlers, S. M., Maxein, J. & Koop, J. H. E. Low-cost microplastic visualization in feeding experiments using an ultraviolet light-emitting flashlight. Ecol. Res. 35, 265–273. https://doi.org/10.1111/1440-1703.12080 (2020).

    Article 

    Google Scholar 

  • 39.

    Karakolis, E. G., Nguyen, B., You, J. B., Rochman, C. M. & Sinton, D. Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environ. Sci. Technol. Lett. 6, 334–340. https://doi.org/10.1021/acs.estlett.9b00241 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Penthala, R. et al. Synthesis of azo and anthraquinone dyes and dyeing of nylon-6,6 in supercritical carbon dioxide. J. CO2 Util. 38, 49–58. https://doi.org/10.1016/j.jcou.2020.01.013 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Prata, J. C., Costa, J. P., Duarte, A. C. & Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Hengstmann, E. & Fischer, E. K. Nile red staining in microplastic analysis – proposal for a reliable and fast identification approach for large microplastics. Environ. Monit. Assess. 191, 612. https://doi.org/10.1007/s10661-019-7786-4,31489505 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Jung, M. R. et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    How marsh grass protects shorelines

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes