in

Protected area networks do not represent unseen biodiversity

[adace-ad id="91168"]
  • 1.

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. https://doi.org/10.1111/conl.12627 (2019).

    Article 

    Google Scholar 

  • 3.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Advance Unedited Version. (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

  • 4.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73. https://doi.org/10.1038/nature13947 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Convention on Biological Diversity. Strategic plan for biodiversity 2011–2020 and the Aichi targets, <http://www.cbd.int/sp/> (2010).

  • 6.

    UNEP-WCMC, IUCN & NGS. (eds UNEP-WCMC, IUCN, & NGS) (Cambridge UK; Gland, Switzerland; and Washington, D.C., USA, 2018).

  • 7.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244. https://doi.org/10.1126/science.1257484 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337. https://doi.org/10.1111/conl.12158 (2015).

    Article 

    Google Scholar 

  • 9.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241. https://doi.org/10.1126/science.aav6886 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Erdelen, W. R. Shaping the fate of life on earth: The post-2020 global biodiversity framework. Global Pol. 11, 347–359. https://doi.org/10.1111/1758-5899.12773 (2020).

    Article 

    Google Scholar 

  • 11.

    Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. in Principles of Conservation Biology (eds M. J. Groom, G. K. Meffe, & C. R. Carroll) Ch. 14, 507 – 549 (2006).

  • 12.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–252 (2000).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Thomassen, H. A. et al. Mapping evolutionary process: A multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413. https://doi.org/10.1111/j.1752-4571.2010.00172.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Kalamandeen, M. & Gillson, L. Demything, “wilderness”: implications for protected area designation and management. Biodivers. Conserv. 16, 165–182. https://doi.org/10.1007/s10531-006-9122-x (2006).

    Article 

    Google Scholar 

  • 15.

    Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, 1–6. https://doi.org/10.1371/journal.pone.0008273 (2009).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Jenkins, C. N., Houtan, K. S. V., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. U.S.A. 112, 5081–5086. https://doi.org/10.1073/pnas.1418034112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, e114367. https://doi.org/10.1371/journal.pone.0114367 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737. https://doi.org/10.1146/annurev.ecolsys.38.091206.095737 (2007).

    Article 

    Google Scholar 

  • 19.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 987. https://doi.org/10.1126/science.1246752 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Allen, C. R., Pearlstine, L. G., Wojcik, D. P. & Kitchens, W. M. The spatial distribution of diversity between disparate taxa: Spatial correspondence between mammals and ants across South Florida, USA. Landsc. Ecol. 16, 453–464 (2001).

    Article 

    Google Scholar 

  • 21.

    Shokri, M. R., Gladstone, W. & Kepert, A. Annelids, arthropods or molluscs are suitable as surrogate taxa for selecting conservation reserves in estuaries. Biodivers. Conserv. 18, 1117–1130 (2009).

    Article 

    Google Scholar 

  • 22.

    Kremen, C. et al. Terrestrial arthropod assemblages: Their use in conservation planning. Conserv. Biol. 7, 796–808 (1993).

    Article 

    Google Scholar 

  • 23.

    Kohlmann, B., Solís, Á., Elle, O., Soto, X. & Russo, R. Biodiversity, conservation, and hotspot atlas of Costa Rica: A dung beetle perspective (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa 1457, 1–34. https://doi.org/10.11646/zootaxa.1457.1.1 (2007).

    Article 

    Google Scholar 

  • 24.

    Chefaoui, R. M., Hortal, J. & Lobo, J. M. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol. Conserv. 122, 327–338. https://doi.org/10.1016/j.biocon.2004.08.005 (2005).

    Article 

    Google Scholar 

  • 25.

    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50. https://doi.org/10.1038/s41467-018-07916-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Mckinney, M. L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 1273–1281. https://doi.org/10.2307/2641951 (1999).

    Article 

    Google Scholar 

  • 27.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conservation 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).

    Article 

    Google Scholar 

  • 28.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • 30.

    Hein, L. The economic value of the Pollination service, a review across scales. Open Ecol. J. 2, 74–82 (2009).

    Article 

    Google Scholar 

  • 31.

    Briones, M. J. I. Soil fauna and soil functions: A jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).

    Article 

    Google Scholar 

  • 32.

    Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655. https://doi.org/10.1016/j.biocon.2011.07.024 (2011).

    Article 

    Google Scholar 

  • 33.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • 34.

    Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B Biol. Sci. 287, 20202166. https://doi.org/10.1098/rspb.2020.2166 (2020).

    Article 

    Google Scholar 

  • 35.

    D’Amen, M. et al. Protected areas and insect conservation: Questioning the effectiveness of Natura 2000 network for saproxylic beetles in Italy. Anim. Conserv. 16, 370–378. https://doi.org/10.1111/acv.12016 (2013).

    Article 

    Google Scholar 

  • 36.

    Martín-Piera, F. Area networks for conserving Iberian insects: A case study of dung beetles (col., Scarabaeoidea). J. Insect Conserv. 5, 233–252 (2001).

    Article 

    Google Scholar 

  • 37.

    Gonzalez-Maya, J. F., Viquez, R. L., Belant, J. L. & Ceballos, G. Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica. PLoS ONE 10, e0124480. https://doi.org/10.1371/journal.pone.0124480 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Ceballos, G. Conservation priorities for mammals in megadiverse Mexico: The efficiency of reserve networks. Ecol. Appl. 17, 569–578 (2007).

    Article 

    Google Scholar 

  • 39.

    Linke, S., Turak, E. & Nel, J. Freshwater conservation planning: The case for systematic approaches. Freshw. Biol. 56, 6–20. https://doi.org/10.1111/j.1365-2427.2010.02456.x (2011).

    Article 

    Google Scholar 

  • 40.

    Escalante, T. et al. Evaluation of five taxa as surrogates for conservation prioritization in the Transmexican Volcanic Belt Mexico. J. Nat. Conserv. 54, 125800. https://doi.org/10.1016/j.jnc.2020.125800 (2020).

    Article 

    Google Scholar 

  • 41.

    Mateo, R. G. et al. The mossy north: An inverse latitudinal diversity gradient in European bryophytes. Sci. Rep. 6, 25546. https://doi.org/10.1038/srep25546 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lessmann, J. et al. Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: Implications for conservation efforts. Neotrop. Biodivers. 2, 99–114. https://doi.org/10.1080/23766808.2016.1222189 (2016).

    Article 

    Google Scholar 

  • 43.

    Similä, M., Kouki, J., Mönkkönen, M., Sippola, A.-L. & Huhta, E. Co-variation and indicators of species diversity: Can richness of forest-dwelling species be predicted in northern boreal forests?. Ecol. Ind. 6, 686–700. https://doi.org/10.1016/j.ecolind.2005.08.028 (2006).

    Article 

    Google Scholar 

  • 44.

    Báldi, A. Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl. Ecol. 4, 589–593. https://doi.org/10.1078/1439-1791-00193 (2003).

    Article 

    Google Scholar 

  • 45.

    Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259. https://doi.org/10.1016/j.biocon.2019.04.022 (2019).

    Article 

    Google Scholar 

  • 46.

    Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).

    Article 

    Google Scholar 

  • 47.

    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232, 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086 (2018).

    Article 

    Google Scholar 

  • 48.

    Cuesta, F. et al. Priority areas for biodiversity conservation in mainland Ecuador. Neotrop. Biodivers. 3, 93–106. https://doi.org/10.1080/23766808.2017.1295705 (2017).

    Article 

    Google Scholar 

  • 49.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B: Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).

    Article 

    Google Scholar 

  • 50.

    Bauer, D. M. & Wing, I. S. Economic consequences of pollinator declines: A synthesis. Agric. Resour. Econ. Rev. 39, 368–383. https://doi.org/10.1017/S1068280500007371 (2010).

    Article 

    Google Scholar 

  • 51.

    Kevan, P. G. & Phillips, T. P. The economic impacts of pollinator declines: An approach to assessing the consequences. Conserv. Ecol. 5, 8. https://doi.org/10.5751/ES-00272-050108 (2001).

    Article 

    Google Scholar 

  • 52.

    Hérivaux, C. & Grémont, M. Valuing a diversity of ecosystem services: The way forward to protect strategic groundwater resources for the future?. Ecosyst. Serv. 35, 184–193. https://doi.org/10.1016/j.ecoser.2018.12.011 (2019).

    Article 

    Google Scholar 

  • 53.

    Haefele, M., Loomis, J. & Bilmes, L. J. in Valuing U.S. National Parks and Programs. America’s Best Investment (eds Linda J. Bilmes & John B. Loomis) 16–44 (Earthscan from Routledge, 2019).

  • 54.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).

    Article 

    Google Scholar 

  • 55.

    Cayuela, L. et al. Species distribution modeling in the tropics: Problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).

    Article 

    Google Scholar 

  • 56.

    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).

    Article 

    Google Scholar 

  • 57.

    Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96. https://doi.org/10.1186/s12915-017-0435-x (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U.S.A. 112, 7519–7523. https://doi.org/10.1073/pnas.1502408112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    SINAC. IV Informe de Pais al Convenio sobre la Diversidad Biológica. Vol. 4 (GEF-PNUD, 2009).

  • 60.

    Llorente Bousquets, J. & Ocegueda, S. in Conocimiento actual de la biodiversidad Vol. 1 (eds Jorge Llorente Bousquets & Susana Ocegueda) Ch. 11, 283–322 (CONABIO, 2008).

  • 61.

    Sabrosky, C. W. in The Yearbook of Agriculture Vol. 2 Ch. 1, 1–37 (United States Department of Agriculture, 1952).

  • 62.

    Hanson, P. Los insectos invasores de Costa Rica. Revista Biocenosis 22, 51–60 (2009).

    Google Scholar 

  • 63.

    March, I. J. & Martínez, M. (eds Instituto Mexicano de Tecnología del Agua et al.) 1–73 (México, Jiutepec, Morelos, 2007).

  • 64.

    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate Species Distribution Models. Ecography 39, 542–552. https://doi.org/10.1111/ecog.01509 (2016).

    Article 

    Google Scholar 

  • 65.

    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).

    Article 

    Google Scholar 

  • 66.

    Velazco, S. J. E., Svenning, J. C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523. https://doi.org/10.1111/ddi.13215 (2020).

    Article 

    Google Scholar 

  • 67.

    Frederico, R. G., Zuanon, J. & De Marco, P. Amazon protected areas and its ability to protect stream-dwelling fish fauna. Biol. Conserv. 219, 12–19. https://doi.org/10.1016/j.biocon.2017.12.032 (2018).

    Article 

    Google Scholar 

  • 68.

    Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Lin. Soc. 105, 479–497 (2012).

    Article 

    Google Scholar 

  • 69.

    Camero, E. R. & Lobo, J. M. The distribution of the species of Eurysternus Dalman, 1824 (Coleoptera: Scarabaeidae) in America: potential distributions and the locations of areas to be surveyed. Trop. Conserv. Sci. 5, 225–244 (2012).

    Article 

    Google Scholar 

  • 70.

    Soberón, J. & Peterson, A. T. Biodiversity informatics: Managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 689–698 (2004).

    Article 

    Google Scholar 

  • 71.

    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751. https://doi.org/10.1111/2041-210X.13152 (2019).

    Article 

    Google Scholar 

  • 72.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

  • 73.

    Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modeling. Version 3.3–7, <http://cran.r-project.org/web/packages/biomod2/index.html> (2016).

  • 74.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models. With applications in R. (Cambridge University Press, 2017).

  • 75.

    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet 
    Article 

    Google Scholar 

  • 76.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • 77.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar 

  • 78.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar 

  • 80.

    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021. https://doi.org/10.1029/2011JG001708 (2011).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Lin, D., Foster, D. P. & Ungar, L. H. VIF regression: A fast regression algorithm for large data. J. Am. Stat. Assoc. 106, 232–247. https://doi.org/10.1198/jasa.2011.tm10113 (2011).

    MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar 

  • 82.

    Phillips, S. J. et al. Sample selection bias and presence-only species distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article 

    Google Scholar 

  • 83.

    Collevatti, R. G. et al. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol. Ecol. Notes 21, 5845–5863. https://doi.org/10.1111/mec.12071 (2012).

    Article 

    Google Scholar 

  • 84.

    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in the representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 85.

    IUCN. The IUCN Red List of Threatened Species. Version 2019.2, <https://www.iucnredlist.org> (2019).

  • 86.

    Ardron, J. A., Possingham, H. P. & Klein, C. J. Marxan Good Practices Handbook. 155 (Pacific Marine Analysis and Research Association, 2008).

  • 87.

    Prioritizr: Systematic Conservation Prioritization in R. Version 4.1.1. Available at https://github.com/prioritizr/prioritizr (2019).

  • 88.

    gurobi: Gurobi Optimizer 8.0 interface. R package version 80–1 v. 8.1 (2018).


  • Source: Ecology - nature.com

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae