in

Redefining the oceanic distribution of Atlantic salmon

[adace-ad id="91168"]

Our study extends the known geographic area used by salmon during their migration in the North Atlantic Ocean and Barents Sea as reported by earlier studies based on conventional tagging and sampling surveys15,16,20. An extended use of the North Atlantic Ocean and Barents Sea was also suggested in recent studies using archival tags12,23,24,25,26,28, but these studies have concentrated on single populations or been restricted by low sample sizes. The present study indicated that multiple individuals from the Norwegian and Danish populations survived to migrate northward from their home river and reached latitudes as high as 80° N. This is to our knowledge the furthest north any Atlantic salmon has ever been recorded, extending previously assumed northern limits8,30. These results confirm that the foraging areas of Atlantic salmon currently extend to more northerly latitudes than previously thought. For populations in Denmark and Norway, the marine distribution is probably limited by the northern boundary of Atlantic currents. In contrast, the populations from Iceland, Ireland and Spain did not travel as far north, but instead crossed the main North Atlantic current and migrated towards southern Greenland, indicating a difference in ocean distribution for these populations. The less directed migration displayed by most of the North American salmon tagged at Greenland was likely due to these fish already being present at their assumed main ocean feeding grounds at the west coast of Greenland15 when tagged.

Despite the fact that salmon from different areas used different migration routes and ocean areas, they consistently migrated to and aggregated in assumed highly productive areas at the boundaries between large-scale frontal water masses where branches of the North Atlantic current lie adjacent to cold polar waters31. In these areas, previous analyses demonstrated frequent diving activity by tagged individuals28. The duration and diving profile of these dives suggested foraging behaviour, rather than predator escape, because the dives were U-shaped, typically lasted a few hours, and diving depths were related to the depth of the mixed layer during the different seasons28. Thus, the increased diving frequency is most likely an indication of increased feeding activity, emphasizing the importance of these productive regions as feeding areas for Atlantic salmon. In contrast to Atlantic salmon from the other areas, the two northernmost populations displayed a high diving frequency close to the shore immediately after sea entrance, as also shown by Hedger et al.28. These rivers are located closer to the frontal water masses, and these fish may have started extensive feeding earlier in their sea migration. This assumption is further supported by a study of Norwegian post-smolts, where the northernmost populations were feeding more extensively just after leaving their rivers than fish from southern populations32. Thus, the northern populations may benefit from a shorter migration route to the main feeding areas for salmon. However, given that many kelts are in poor condition when they enter the sea, it is likely that tagged fish from all populations were feeding pelagically in the first weeks at sea during the transit away from the coast when prey were available.

Migration from the rivers to the assumed foraging areas (i.e., the most distant areas they migrated to) was fast and direct for individuals from southern populations, while salmon from the northern Norway did not display similar direct migration routes. Our results are similar to those reported by an earlier study26 on the same North-Western Norwegian population as in the present study, and are likely related to the greater proximity to ocean frontal areas and rich food resources.

The results in the present study may have been influenced by the relatively large size of the tag compared to the size of the fish. Hedger et al.33 assessed tagging effects of PSATs on post-spawned Atlantic salmon by comparing their behaviour with salmon tagged with much smaller archival tags. They found that the overall depth distribution, ocean migration routes based on temperature recordings and return rates did not differ between salmon tagged with PSATs and smaller archival tags and concluded that PSATs are suitable for use in researching large-scale migratory behaviour of adult salmon at sea. However, salmon with PSATs dived less frequently and to slightly shallower depths33. Based on this, we believe the conclusions of the present study are valid despite potential tagging effects, but the diving depths and frequencies might be underestimated compared to non-tagged fish.

Diet data from adult salmon in the ocean are limited but show that salmon feed on a variety of prey taxa. Typically, herring (Clupea harengus), sand eels (Ammodytes spp.), capelin (Mallotus villosus) and myctophids dominate as fish prey, while euphausiids and amphipods often dominate as crustacean prey34,35,36. Although there exist some data of adult herring and capelin during parts of the year, there is limited information on the spatial and temporal distribution of crustaceans in these ocean areas, and it is therefore difficult to relate the salmon diving behaviour to availability of all their main prey items. However, salmon appeared to be able to forage on prey far below the surface, indicated by the frequent dives, and salmon at sea have also previously been shown to feed on the mesopelagic community37,38. Hedger et al.28 found that the diving depth increased with the depth of the mixed layer and hypothesised that stratification affected the aggregation of prey and thereby the salmon diving behaviour. They also showed that when the stratification disappeared during the dark winter months, the salmon dived less but their dives were deeper. Nevertheless, the possibilities to feed at different depths28, expand the foraging niche of salmon compared to feeding merely near the surface.

Dadswell et al.11 published the “merry-go-round hypothesis”, which implies that both first-time migrants and previous spawners from all salmon populations enter the North Atlantic Subpolar Gyres and move counter clockwise within these gyres until returning to their natal rivers. Although the full migration from river outrun to return was not followed in the present study (most tags popped off half-way into the migration), and some individuals indicated a counter clockwise migration pattern, most of the populations and individuals in this study clearly did not follow the North Atlantic Subpolar Gyres during the first months at sea. Therefore, most of our data did not support the merry-go-round hypothesis. However, some individuals from northern Norway seemed to follow the currents to a larger extent than individuals from other populations during the first months at sea. Previous studies on Atlantic salmon from Canada also documented that adults migrated either independently or against prevailing currents while at sea, indicating that the horizontal movement of adults are primarily governed by other factors12,24.

Due to the size limit of the pop-up-tags, we primarily tracked large post-spawned individuals that are more mobile than smaller first-time migrants. Although some studies have shown that first-time migrants can be found in the same areas as post-spawners from the same populations8,30 is not known to which extent the migration pattern and distribution of post-spawners represent the same migration pattern of first-time migrants. Due to a larger body size, it is possible that the migration of post-spawners depends to a lesser degree on ocean currents and gyres than do the movements of first-time migrants, especially in the first part of the migration. For example, we observed that the Irish and Spanish post-spawned individuals all crossed the main North Atlantic current towards Greenlandic waters. However, Irish and other southern European post-smolts have frequently been captured in the Norwegian Sea20, indicating that some of these individuals migrate and follow the main ocean current in a northward direction. It is possible that many of these post-smolts later migrate southwest towards Greenland and feed in these waters as maiden salmon before they return to rivers. This corresponds to the observation that it is mostly large (two sea-winter) southern European salmon (including Irish individuals) that are found in the southern Greenland feeding areas20. Therefore, it might be that the post-spawned salmon from these populations return to their primary feeding areas where they were feeding as maiden salmon from their first sea migration, and not necessarily to the same area as they started their feeding migration as post-smolts.

Populations differed in their ocean distribution, but the distribution also overlapped to some degree between or among populations, with more overlap between geographically proximate than distant populations. Some populations never overlapped in geographical distribution during the study. The populations from Ireland and Spain did not overlap with the Norwegian and Danish salmon, but there was a small spatial overlap between the Irish salmon and the North American salmon tagged at Greenland, although area use by these populations did not overlap in time. It is known that populations from North America and Europe largely use different parts of the North Atlantic, with more North American salmon in the western part and more European salmon in the eastern part of the ocean although they have been shown to mix at the feeding grounds at the Faroes and at Greenland12,15,16,18,20. For the Spanish population, it should be noted that tagged individuals were followed for a relatively short period, and a larger sample size over a longer period might have shown some overlap with the northern European populations, based on the initial northward direction of two individuals. At the same time as populations differed in their ocean distribution, there were also relatively large within-population differences in migration routes and geographic distribution. Individual differences in migration routes and ocean distribution of salmon from the same population, even within the same year, were also shown by Strøm et al.12,26. Collectively, these results imply that salmon from different populations will experience highly different ecological conditions, potentially contributing to between-and within-population variation in growth and survival. Since our data are limited by a varying number of individuals among the studied populations, and restricted mainly to post-spawned salmon, our results represent a minimum overlap among the populations so the actual overlap may be larger. Nevertheless, this strongly indicates a varying degree of geographical separation in ocean feeding areas. Thus, geographically close populations will to a larger extent be influenced by similar conditions in the ocean than more distant populations.

The study was carried out over several years, with not all sites having tagging undertaken in the same years. There is a possibility that geographic area use and overlap among populations may vary among years, according to variation in environmental conditions among years29. However, data from multiple years for some populations suggest consistent population specific migration routes and area use among years, indicating that the principal patterns are stable over time for particular salmon populations.

The differing distributions of salmon from particular populations in different oceanic regions might simply be a function of distance to appropriate feeding grounds from the different home rivers, with individuals from the different rivers mainly adapted to seek the closest feeding areas. The route selection during the migration might in addition be a result of each individuals’ opportunistic behaviour and which food resources and environmental conditions they encounter along the journey. As discussed above, the experience and learning during the first ocean migration might also impact individuals’ route choice and area use. Salmon from southern populations used more southern ocean areas, and hence stayed in warmer water, than salmon from the northern populations. We cannot rule out that salmon from different populations have different temperature preferences due to different thermal selection regimes in their home rivers, but similar to a previous study29, we suggest that the differences in thermal habitat among populations utilising different areas at sea are mainly driven by availability of prey fields. There is generally little support for the hypothesis that variation in salmonid growth rates reflects thermal adaptations to their home stream39.

Despite the variation in migration patterns among and within populations, most individuals seemed to migrate to distant ocean frontal areas. This suggests that climate change may have greater impact on populations originating further south, because the distances and time required to travel to feeding areas will increase if the boundary between Atlantic and Arctic waters move northward because of ocean warming. Our study has shown that several populations are able to migrate over large distances, but the capacity for populations to adapt to an increased migration distance is unknown. Given increased migration time, especially for southern populations, the time available for accumulating important energy reserves will likely be reduced. In addition, increased water temperatures in the North Atlantic may also increase the energy expenditure that the individual fish spend per unit of distance when migrating from their home rivers towards the feeding areas. This may affect all populations to some degree, and may contribute to an additional burden for Atlantic salmon populations that are already in a poor state. This will also add to the hypothesized negative effect of climate change in freshwater for the southern populations, where temperatures will have a greater likelihood of reaching to growth inhibiting levels compared to more northern populations39.

Taking advantage of the development of electronic tags, we have shown an extended use of the North Atlantic Ocean by Atlantic salmon, including the Barents Sea, which contrasts to the earlier strong focus on feeding areas at the Faroes, West Greenland and in the Norwegian Sea in previous studies. These results expand the knowledge on the marine foraging and habitat niche of Atlantic salmon, in terms of geography, migration behaviour and thermal niche. The existence of feeding areas at the boundaries between Atlantic and Arctic surface currents suggests that salmon have a strong link to Arctic oceanic frontal systems. We have further shown that salmon from different populations may migrate to different ocean frontal areas in the North Atlantic Ocean and Barents Sea and therefore be impacted by different ecological conditions that may contribute to within-population variation in growth and survival. We also conclude that climate induced changes in oceanographic conditions, which will likely alter the location of and distance to polar frontal feeding areas, may have region-specific influences on the length and cost of the Atlantic feeding migrations, particularly affecting the southern populations most. As the polar oceans get warmer and current patterns shift, changes in the location and productivity of high latitude fronts will become evident. As migration distances become longer, or more variable, and the time accumulating energy is reduced, the variation in the marine survival and productivity of different populations are likely to become more marked. Combined, our results help to shed light on important ecological process that shape Atlantic salmon population dynamics within most of its distribution area.


Source: Ecology - nature.com

Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae