in

Reproductive plasticity of Hawaiian Montipora corals following thermal stress

[adace-ad id="91168"]
  • 1.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995. https://doi.org/10.1073/pnas.1208909109 (2012).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x (2003).

    Article 

    Google Scholar 

  • 7.

    Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime?. Science 307, 1725–1726. https://doi.org/10.1126/science.1104258 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013. https://doi.org/10.1002/lno.10481 (2017).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Jokiel, P. L. & York, R. H. Solar Ultraviolet Photobiology of the Reef Coral Pocillopora Damicornis and Symbiotic Zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).

    Google Scholar 

  • 13.

    Jokiel, P. L., Lesser, M. P. & Ondrusek, M. E. UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42, 1468–1473. https://doi.org/10.4319/lo.1997.42.6.1468 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198. https://doi.org/10.1039/C0PP90034F (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Ferrier-Pagès, C. et al. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213, 76–87. https://doi.org/10.2307/25066620 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Ailsa, P. K. & Ross, J. J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Mar. Ecol. Prog. Ser. 253, 145–154 (2003).

    Article 

    Google Scholar 

  • 17.

    Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170. https://doi.org/10.1016/j.marpolbul.2017.01.050 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Piniak, G. A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar. Environ. Res. 64, 456–468. https://doi.org/10.1016/j.marenvres.2007.04.001 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208. https://doi.org/10.1007/bf00402312 (1977).

    Article 

    Google Scholar 

  • 21.

    Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989. https://doi.org/10.1007/s002270100634 (2001).

    Article 

    Google Scholar 

  • 24.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239. https://doi.org/10.1007/s003380170003 (2001).

    Article 

    Google Scholar 

  • 26.

    Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000 2, 1123–1128 (2002).

  • 27.

    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).

    Article 

    Google Scholar 

  • 31.

    Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185. https://doi.org/10.1007/s00227-007-0765-2 (2007).

    Article 

    Google Scholar 

  • 32.

    Cumbo, V. R., Fan, T. Y. & Edmunds, P. J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J. Exp. Mar. Biol. Ecol. 439, 100–107. https://doi.org/10.1016/j.jembe.2012.10.019 (2013).

    Article 

    Google Scholar 

  • 33.

    Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763. https://doi.org/10.1007/s00338-007-0258-2 (2007).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Lager, C. V. A., Hagedorn, M. S., Rodgers, K. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Cox, E. F. Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26, 721–724. https://doi.org/10.1007/s00338-007-0251-9 (2007).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 37.

    Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E. & Loya, Y. Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar. Ecol. Prog. Ser. 426, 149–159 (2011).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Edge, S. E., Shearer, T. L., Morgan, M. B. & Snell, T. W. Sub-lethal coral stress: Detecting molecular responses of coral populations to environmental conditions over space and time. Aquat. Toxicol. 128–129, 135–146. https://doi.org/10.1016/j.aquatox.2012.11.014 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Downs, C. A. et al. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology 21, 768–782. https://doi.org/10.1007/s10646-011-0837-4 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Olsen, K., Ritson-Williams, R., Ochrietor, J. D., Paul, V. J. & Ross, C. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar. Biol. 160, 2609–2618. https://doi.org/10.1007/s00227-013-2255-z (2013).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: Energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Sci. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).

    Article 

    Google Scholar 

  • 45.

    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719. https://doi.org/10.7717/peerj.3719 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawai‘i. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398 (2017).

    Article 

    Google Scholar 

  • 48.

    Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu. Doctoral Dissertation, University of Hawaiʻi at Mānoa, (2019).

  • 49.

    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).

    Article 

    Google Scholar 

  • 50.

    Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Biol. Sci. 286, 20190614. https://doi.org/10.1098/rspb.2019.0614 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Rodgers, K. U. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).

    Article 

    Google Scholar 

  • 52.

    Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).

    Google Scholar 

  • 53.

    Heyward, A. J. Sexual reproduction in five species of the coral Montipora. In: Coral Reef Population Biology. Hawaii Institute of Marine Biology Technical Report 37, 170–178 (1985).

  • 54.

    Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway. (Mutual Publishing Company, 2005).

  • 55.

    Veron, J. E. N. Corals of the world. Volume 1. (Australia Institute of Marine Science, 2000).

  • 56.

    Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5, e15021. https://doi.org/10.1371/journal.pone.0015021 (2010).

  • 57.

    Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153. https://doi.org/10.1186/s12862-019-1476-2 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Padilla-Gamiño, J. L., Weatherby, T. M., Waller, R. G. & Gates, R. D. Formation and structural organization of the egg–sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30, 371–380. https://doi.org/10.1007/s00338-010-0700-8 (2011).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18 (2014).

    Article 

    Google Scholar 

  • 60.

    Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).

    Article 

    Google Scholar 

  • 62.

    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata . In Proceedings of the 6th International Coral Reef Symposium Vol. 2 727–732 (1988).

  • 64.

    Binet, M. T., Doyle, C. J., Williamson, J. E. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100. https://doi.org/10.1016/j.jembe.2013.12.008 (2014).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084. https://doi.org/10.1242/jeb.114900 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 67.

    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882. https://doi.org/10.4319/lo.2007.52.5.1874 (2007).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Hayward, A. & Gillooly, J. F. The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).

    Article 

    Google Scholar 

  • 72.

    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 75.

    Benzie, J. A. H. & Dixon, P. The effects of sperm concentration, sperm: Egg ratio, and gamete age on fertilization success in Crown-of-Thorns Starfish (Acanthaster planci) in the Laboratory. Biol. Bull. 186, 139–152. https://doi.org/10.2307/1542048 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 76.

    Brazeau, D. A. & Lasker, H. R. Reproductive success in the Caribbean octocoral Briareum asbestinum. Mar. Biol. 114, 157–163. https://doi.org/10.1007/BF00350865 (1992).

    Article 

    Google Scholar 

  • 77.

    Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 79.

    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Levitan, D. R., Sewell, M. A. & Chia, F.-S. How distribution and abundance influence fertilization success in the Sea Urchin Strongylocentotus franciscanus. Ecology 73, 248–254. https://doi.org/10.2307/1938736 (1992).

    Article 

    Google Scholar 

  • 81.

    Jamieson, G. S. Marine invertebrate conservation: Evaluation of fisheries over-exploitation Concerns1. Am. Zool. 33, 551–567. https://doi.org/10.1093/icb/33.6.551 (1993).

    Article 

    Google Scholar 

  • 82.

    Fitt, K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).

    Article 

    Google Scholar 

  • 83.

    Coles, S. L. & Jokiel, P. L. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49, 187–195. https://doi.org/10.1007/BF00391130 (1978).

    Article 

    Google Scholar 

  • 84.

    Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).

    Article 

    Google Scholar 

  • 85.

    Grunwald, D. J. & Streisinger, G. Induction of mutations in the zebrafish with ultraviolet light. Genet. Res. 59, 93–101. https://doi.org/10.1017/S0016672300030305 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 86.

    Lamare, M., Burritt, D. & Lister, K. Chapter Four – Ultraviolet Radiation and Echinoderms: Past, Present and Future Perspectives. Adv. Mar. Biol. 59, 145–187 (Academic Press, 2011).

  • 87.

    Jokiel, P. L. Solar ultraviolet radiation and coral reef Epifauna. Science 207, 1069–1071 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 88.

    Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C. & Lesser, M. P. The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131–146. https://doi.org/10.1016/j.jembe.2006.06.014 (2006).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Leutenegger, A. et al. It’s cheap to be colorful. FEBS J. 274, 2496–2505. https://doi.org/10.1111/j.1742-4658.2007.05785.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 90.

    Rosic, N. N. & Dove, S. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77, 8478. https://doi.org/10.1128/AEM.05870-11 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474. https://doi.org/10.1007/s00338-012-0994-9 (2013).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Dove, S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99–116 (2004).

    ADS 
    Article 

    Google Scholar 

  • 93.

    Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Change Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).

    ADS 
    Article 

    Google Scholar 

  • 94.

    Pennington, J. T. The ecology of fertilization of Echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).

    Article 
    PubMed 

    Google Scholar 

  • 95.

    Levitan, D. R. & Young, C. M. Reproductive success in large populations: empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J. Exp. Mar. Biol. Ecol. 190, 221–241. https://doi.org/10.1016/0022-0981(95)00039-T (1995).

    Article 

    Google Scholar 

  • 96.

    Hagedorn, M. et al. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS ONE 10, e0118364. https://doi.org/10.1371/journal.pone.0118364 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61. https://doi.org/10.1038/s41598-020-79732-x (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Kolinski, S. P. Sexual reproduction and the early life history of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Doctoral Dissertation, University of Hawai’i at Mānoa, (2004).

  • 99.

    Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).

    Article 

    Google Scholar 

  • 100.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2019).


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific