in

Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs

[adace-ad id="91168"]
  • 1.

    Agrawal, A. A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 101, e02924 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Agrawal, A. A., Conner, J. K. & Rasmann, S. in Evolution After Darwin: The First 150 Years (eds Bell, M. et al.) 243–268 (Sinauer Associates, 2010).

  • 3.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).

    Article 

    Google Scholar 

  • 4.

    Grime, J. P. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (John Wiley & Sons, 2012).

  • 5.

    Fry, J. D. Detecting ecological trade-offs using selection experiments. Ecology 84, 1672–1678 (2003).

    Article 

    Google Scholar 

  • 6.

    Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol. Divers. 9, 3–33 (2016).

    Article 

    Google Scholar 

  • 7.

    Kneitel, J. M. & Chase, J. M. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).

    Article 

    Google Scholar 

  • 8.

    Tilman, D. Plant Strategies and the Dynamics and Structure of Plant Communities (Princeton Univ. Press, 1988).

  • 9.

    Lusk, C. H. & Jorgensen, M. A. The whole-plant compensation point as a measure of juvenile tree light requirements. Funct. Ecol. 27, 1286–1294 (2013).

    Article 

    Google Scholar 

  • 10.

    Ho, M. D., Rosas, J. C., Brown, K. M. & Lynch, J. P. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 32, 737–748 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Forister, M. L. & Jenkins, S. H. A neutral model for the evolution of diet breadth. Am. Nat. 190, E40–E54 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Laughlin, D. C., Strahan, R. T., Adler, P. B. & Moore, M. M. Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecol. Lett. 21, 411–421 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2012).

    Article 

    Google Scholar 

  • 14.

    Mason, N. W. H. et al. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 100, 678–689 (2012).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Gompert, Z. et al. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol. Ecol. 24, 2777–2793 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 213, 1597–1603 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).

    Article 

    Google Scholar 

  • 23.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Kytöviita, M.-M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13–24 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).

    Article 

    Google Scholar 

  • 30.

    Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394 (2017).

    Article 

    Google Scholar 

  • 31.

    Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article 

    Google Scholar 

  • 32.

    Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).

    Article 

    Google Scholar 

  • 33.

    Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C. & Blackwood, C. B. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562–1573 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Fort, F. & Freschet, G. T.Plant ecological indicator values as predictors of fine-root trait variations. J. Ecol. 108, 1565–1577 (2020).

    Article 

    Google Scholar 

  • 36.

    Purcell, A. S. T., Lee, W. G., Tanentzap, A. J. & Laughlin, D. C. Fine root traits are correlated with flooding duration while aboveground traits are related to grazing in an ephemeral wetland. Wetlands 39, 291–302 (2019).

    Article 

    Google Scholar 

  • 37.

    Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).

    Article 

    Google Scholar 

  • 38.

    Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).

    Article 

    Google Scholar 

  • 39.

    Chen, W., Zeng, H., Eissenstat, D. M. & Guo, D. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob. Ecol. Biogeogr. 22, 846–856 (2013).

    Article 

    Google Scholar 

  • 40.

    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).

    Article 

    Google Scholar 

  • 41.

    Ostonen, I. et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 215, 977–991 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Wang, R. et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Funct. Ecol. 32, 29–39 (2018).

    Article 

    Google Scholar 

  • 43.

    Craine, J. M. & Lee, W. G. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134, 471–478 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).

    Article 

    Google Scholar 

  • 45.

    Zadworny, M. et al. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob. Change Biol. 23, 1218–1231 (2017).

    Article 

    Google Scholar 

  • 46.

    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Bennett, A. E., Grussu, D., Kam, J., Caul, S. & Halpin, C. Plant lignin content altered by soil microbial community. New Phytol. 206, 166–174 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Moore, B. D. & Johnson, S. N. Get tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses. Front. Plant Sci. 7, 1925 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).

    Article 

    Google Scholar 

  • 50.

    De la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Hacke, U. G., Sperry, J. S. & Pittermann, J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl. Ecol. 1, 31–41 (2000).

    Article 

    Google Scholar 

  • 52.

    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Article 

    Google Scholar 

  • 53.

    Wang, B. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186, 514–525 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Grubb, P. in Handbook of Vegetation Science Vol. 3 (ed. White, J.) 595–621 (Dr. W. Junk Publishers, 1985).

  • 55.

    Laughlin, D. C. et al. Quantifying multimodal trait distributions improves trait-based predictions of species abundances and functional diversity. J. Veg. Sci. 26, 46–57 (2015).

    Article 

    Google Scholar 

  • 56.

    Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article 

    Google Scholar 

  • 57.

    Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article 

    Google Scholar 

  • 58.

    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kumordzi, B. B. et al. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct. Ecol. 33, 1771–1784 (2019).

    Article 

    Google Scholar 

  • 61.

    Velázquez, E., Paine, C. E. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).

    Article 

    Google Scholar 

  • 62.

    Butterfield, B. J. Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos 124, 1374–1382 (2015).

    Article 

    Google Scholar 

  • 63.

    Iversen, C. M. et al. A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 

    Google Scholar 

  • 65.

    Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: what proportion of the species need to be measured? Appl. Veg. Sci. 10, 91–96 (2007).

    Article 

    Google Scholar 

  • 66.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article 

    Google Scholar 

  • 68.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 69.

    Jamil, T., Ozinga, W. A., Kleyer, M. & Ber Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).

    Article 

    Google Scholar 

  • 70.

    Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2018).

    Google Scholar 

  • 71.

    R Development Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 72.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 73.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 74.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 75.

    Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance. R package version 0.4.2 (2019).

  • 76.

    Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 (2020).

  • 77.

    Roberts, D. W. labdsv: Ordination and multivariate analysis for ecology. R package version 1.8.0 https://CRAN.R-project.org/package=labdsv (2016).

  • 78.

    Anderson, D. R. Model Based Inference in the Life Sciences: a Primer on Evidence (Springer Science & Business Media, 2008).


  • Source: Ecology - nature.com

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae