in

Snails associated with the coral-killing sponge Terpios hoshinota in Okinawa Island, Japan

[adace-ad id="91168"]
  • 1.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737. https://doi.org/10.1126/science.1152509 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Sokolow, S. Effects of a changing climate on the dynamics of coral infectious disease: A review of the evidence. Dis. Aquat. Org. 87, 5–18. https://doi.org/10.3354/dao02099 (2009).

    Article 

    Google Scholar 

  • 4.

    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 17995–17999. https://doi.org/10.1073/pnas.1208909109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    May, L. A. et al. Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis. Aquat. Toxicol. 28, 105454. https://doi.org/10.1016/j.aquatox.2020.105454 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Bell, J. J., Davy, S. K., Jones, T., Taylor, M. W. & Webster, N. S. Could some coral reefs become sponge reefs as our climate changes?. Glob. Change. Biol. 19, 2613–2624. https://doi.org/10.1111/gcb.12212 (2013).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Bell, J. J. & Smith, D. Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: Richness and abundance. J. Mar. Biol. Assoc UK 84, 581–591. https://doi.org/10.1017/S0025315404009580h (2004).

    Article 

    Google Scholar 

  • 9.

    Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166. https://doi.org/10.1139/z06-019 (2006).

    Article 

    Google Scholar 

  • 10.

    Wooster, M. K., Marty, M. J. & Pawlik, J. R. Defense by association: Sponge-eating fishes alter the small-scale distribution of Caribbean reef sponges. Mar. Ecol. 38, e12410. https://doi.org/10.1111/maec.12410 (2017).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Bryan, P. G. Growth rate, toxicity, and distribution of the encrusting sponge Terpios sp. (Hadromerida: Suberitidae) in Guam, Mariana Islands. Micronesica 9, 237–242 (1973).

    Google Scholar 

  • 12.

    Plucer-Rosario, G. The effect of substratum on the growth of Terpios, an encrusting sponge which kills corals. Coral Reefs 5, 197–200. https://doi.org/10.1007/BF00300963 (1987).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Rützler, K. & Muzik, K. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Sci. Mar. 57, 395-403.e0120853 (1993).

    Google Scholar 

  • 14.

    Reimer, J. D., Nozawa, Y. & Hirose, E. Domination and disappearance of the black sponge: A quarter century after the initial Terpios outbreak in Southern Japan. Zool. Stud. 50, 394 (2010).

    Google Scholar 

  • 15.

    Reimer, J. D., Mizuyama, M., Nakano, M., Fujii, T. & Hirose, E. Current status of the distribution of the coral-encrusting cyanobacteriosponge Terpios hoshinota in southern Japan. Galaxea J. Coral Reef Stud. 13, 35–44. https://doi.org/10.3755/galaxea.13.35 (2011).

    Article 

    Google Scholar 

  • 16.

    Yomogida, M., Mizuyama, M., Kubomura, T. & Reimer, J. D. Disappearance and return of an outbreak of the coral-killing cyanobacteriosponge Terpios hoshinota in Southern Japan. Zool. Stud. 56, 1–7. https://doi.org/10.6620/ZS.2017.56-07 (2017).

    Article 

    Google Scholar 

  • 17.

    Liao, M.-H. et al. The ‘“black disease”’ of reef-building corals at Green Island, Taiwan outbreak of a cyanobacteriosponge Terpios hoshinota (Suberitidae; Hadromerida). Zool. Stud. 46, 520 (2007).

    Google Scholar 

  • 18.

    Nozawa, Y., Huang, Y. S. & Hirose, E. Seasonality and lunar periodicity in the sexual reproduction of the coral-killing sponge, Terpios hoshinota. Coral Reefs 35, 1071–1081. https://doi.org/10.1007/s00338-016-1417-0 (2016).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Fujii, T. et al. Coral-killing cyanobacteriosponge (Terpios hoshinota) on the Great Barrier Reef. Coral Reefs 30, 483. https://doi.org/10.1007/s00338-011-0734-6 (2011).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Shi, Q., Liu, G. H., Yan, H. Q. & Zhang, H. L. Black disease (Terpios hoshinota): A probable cause for the rapid coral mortality at the northern reef of Yongxing Island in the South China Sea. Ambio 41, 446–455. https://doi.org/10.1007/s13280-011-0245-2 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Hoeksema, B. W., Waheed, Z. & de Voogd, N. J. Partial mortality in corals overgrown by the sponge Terpios hoshinota at Tioman Island, Peninsular Malaysia (South China Sea). Bull. Mar. Sci. 90, 989–990. https://doi.org/10.5343/bms.2014.1047 (2014).

    Article 

    Google Scholar 

  • 22.

    Van der Ent, E., Hoeksema, B. W. & de Voogd, N. J. Abundance and genetic variation of the coral-killing cyanobacteriosponge Terpios hoshinota in the Spermonde Archipelago, SW Sulawesi, Indonesia. J. Mar. Biol. Assoc. UK 96, 453–463. https://doi.org/10.1017/S002531541500034X (2015).

    Article 

    Google Scholar 

  • 23.

    Madduppa, H., Schupp, P. J., Faisal, M. R., Sastria, M. Y. & Thoms, C. Persistent outbreaks of the “black disease” sponge Terpios hoshinota in Indonesian coral reefs. Mar. Biodivers. 47, 149–151. https://doi.org/10.1007/s12526-015-0426-5 (2017).

    Article 

    Google Scholar 

  • 24.

    Montano, S., Chou, W.-H., Chen, C. A., Galli, P. & Reimer, J. D. First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean. Bull. Mar. Sci. 91, 97–98. https://doi.org/10.5343/bms.2014.1054 (2015).

    Article 

    Google Scholar 

  • 25.

    Elliott, J. B., Patterson, M., Vitry, E., Summers, N. & Miternique, C. Morphological plasticity allows coral to actively overgrow the aggressive sponge Terpios hoshinota (Mauritius, Southwestern Indian Ocean). Mar. Biodivers. 46, 489–493. https://doi.org/10.1007/s12526-015-0370-4 (2016).

    Article 

    Google Scholar 

  • 26.

    Thinesh, T., Mathews, G., Raj, K. D. & Edward, J. K. P. Outbreaks of Acropora white syndrome and Terpios sponge overgrowth combined with coral mortality in Palk Bay, southeast coast of India. Dis. Aquat. Org. 126, 63–70. https://doi.org/10.3354/dao03155 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Birenheide, R., Amemiya, S. & Motokawa, T. Penetration and storage of sponge spicules in tissues and coelom of spongivorous echinoids. Mar. Biol. 115, 677–683. https://doi.org/10.1007/BF00349376 (1993).

    Article 

    Google Scholar 

  • 28.

    Vicente, J., Osberg, A., Marty, M. J., Rice, K. & Toonen, R. J. Influence of palatability on the feeding preferences of the endemic Hawaiian tiger cowrie for indigenous and introduced sponges. Mar. Ecol. Prog. Ser. 647, 109–122. https://doi.org/10.3354/meps13418 (2020).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Penney, B. K. How specialized are the diets of northeastern Pacific sponge-eating dorid nudibranchs?. J. Moll. Stud. 79, 64–73. https://doi.org/10.1093/mollus/eys038 (2013).

    Article 

    Google Scholar 

  • 30.

    Teruya, T. et al. Nakiterpiosin and nakiterpiosinone, novel cytotoxic C-nor-D-homosteroids from the Okinawan sponge Terpios hoshinota. Tetrahedron 60, 6989–6993. https://doi.org/10.1016/j.tet.2003.08.083 (2004).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Marshall, B. A. Cerithiopsidae (Mollusca: Gastropoda) of New Zealand, and a provisional classification of the family. New Zeal. J. Zool. 5, 47–120. https://doi.org/10.1080/03014223.1978.10423744 (1978).

    Article 

    Google Scholar 

  • 32.

    Collin, R. Development of Cerithiopsis gemmulosum (Gastropoda: Cerithiopsidae) from Bocas del Toro, Panama. Caribb. J. Sci. 40, 192–197 (2004).

    Google Scholar 

  • 33.

    Cecalupo, A. & Perugia, I. Cerithiopsidae and Newtoniellidae (Gastropoda: Triphoroidea) from New Caledonia, western Pacific. Visaya Suppl. 7, 1–175 (2016).

    Google Scholar 

  • 34.

    Cecalupo, A. & Perugia, I. Cerithiopsidae. In Philippine Marine Mollusks Vol. V (ed. Poppe, G.) 1352–1375 (Conchbooks, 2017).

    Google Scholar 

  • 35.

    Cecalupo, A. & Perugia, I. New species of Cerithiopsidae (Gastropoda: Triphoroidea) from Papua New Guinea (Pacific Ocean). Visaya Suppl. 11, 1–187 (2018).

    Google Scholar 

  • 36.

    Cecalupo, A. & Perugia, I. New species of Cerithiopsidae and Newtoniellidae from Okinawa (Japan-Pacific Ocean). Visaya Suppl. 12, 1–84 (2019).

    Google Scholar 

  • 37.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294–299 (1994).

    CAS 

    Google Scholar 

  • 38.

    Kano, Y. & Fukumori, H. Predation on hardest molluscan eggs by confamilial snails (Neritidae) and its potential significance in egg-laying site selection. J. Moll. Stud. 76, 360–366. https://doi.org/10.1093/mollus/eyq018 (2010).

    Article 

    Google Scholar 

  • 39.

    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.61. http://www.mesquiteproject.org (2019).

  • 40.

    Modica, M. V., Mariottini, P., Prkić, J. & Oliverio, M. DNA-barcoding of sympatric species of ectoparasitic gastropods of the genus Cerithiopsis (Mollusca: Gastropoda: Cerithiopsidae) from Croatia. J. Mar. Biol. Assoc. UK 93, 1059–1065. https://doi.org/10.1017/S0025315412000926 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Takano, T. & Kano, Y. Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Mol. Phylogenet. Evol. 79, 258–269. https://doi.org/10.1016/j.ympev.2014.06.021 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Kimura, M. A. Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111–120. https://doi.org/10.1007/BF01731581 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Divergent abiotic spectral pathways unravel pathogen stress signals across species

    How diet affects tumors