in

Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community

[adace-ad id="91168"]
  • 1.

    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    de Carvalho CCCR. Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 2018;5:126.

  • 7.

    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10:39–50.

    CAS 

    Google Scholar 

  • 8.

    Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA. 2008;105:19052–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Yan J, Monaco H, Xavier JB. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu Rev Microbiol. 2019;73:293–312.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Gokhale S, Conwill A, Ranjan T, Gore J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat Commun. 2018;9:5273.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci USA. 2014;111:E4911–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Birzu G, Hallatschek O, Korolev KS. Fluctuations uncover a distinct class of traveling waves. Proc Natl Acad Sci USA. 2018;115:E3645–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J. 2020;14:2007–18.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10:e1003979.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony expansion of socially motile Myxococcus xanthus cells is driven by growth, motility, and exopolysaccharide production. PLoS Comput Biol. 2016;12:e1005010.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A. The ecology and evolution of partial migration. Oikos. 2011;120:1764–75.

    Google Scholar 

  • 17.

    Lundberg P. Partial bird migration and evolutionarily stable strategies. J Theor Biol. 1987;125:351–60.

    Google Scholar 

  • 18.

    Kokko H. Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos. 2011;120:1826–37.

    Google Scholar 

  • 19.

    Singh NJ, Leonardsson K. Partial migration and transient coexistence of migrants and residents in animal populations. PloS One. 2014;9:e94750.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol. 2012;10:743.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.UTI-0017-2013.

  • 22.

    Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun. 2004;72:3941–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun. 2002;70:389–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pr Urol. 2008;5:598–608.

    CAS 

    Google Scholar 

  • 25.

    Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57:249–73.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16:496–506.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol. 2011;8:055003.

    PubMed 

    Google Scholar 

  • 30.

    Howery KE, Şimşek E, Kim M, Rather PN. Positive autoregulation of the flhDC operon in Proteus mirabilis. Res Microbiol. 2018;169:199–204.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol. 2019;201:e00726–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Furness RB, Fraser GM, Hay NA, Hughes C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol. 1997;179:5585–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Claret L, Hughes C. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol. 2000;303:467–78.

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.

    CAS 

    Google Scholar 

  • 35.

    Andac T, Weigmann P, Velu SKP, Pinçe E, Volpe G, Volpe G, et al. Active matter alters the growth dynamics of coffee rings. Soft Matter. 2019;15:1488–96.

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Nellimoottil TT, Rao PN, Ghosh SS, Chattopadhyay A. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir. 2007;23:8655–8.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Clemmer KM, Rather PN. Regulation of flhDC expression in Proteus mirabilis. Res Microbiol. 2007;158:295–302.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Howery KE, Clemmer KM, Rather PN. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet. 2016;62:775–89.

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Howery KE, Clemmer KM, Şimşek E, Kim M, Rather PN. Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol. 2015;197:2499–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Wang Q, Zhao Y, McClelland M, Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica Serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol. 2007;189:8447–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Samanta P, Clark ER, Knutson K, Horne SM, Prüß BM. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol. 2013;13:182.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Girgis HS, Liu Y, Ryu WS, Tavazoie S. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 2007;3:e154.

    PubMed Central 

    Google Scholar 

  • 43.

    Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol. 2003;49:823–32.

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Rieck VT, Palumbo SA, Witter LD. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens. J Gen Microbiol. 1973;74:1–8.

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Shao X, Mugler A, Kim J, Jeong HJ, Levin BR, Nemenman I. Growth of bacteria in 3-d colonies. PLoS Comput Biol. 2017;13:e1005679.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife. 2019;8:e41093.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Lavrentovich MO, Koschwanez JH, Nelson DR. Nutrient shielding in clusters of cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:062703. –

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Dal Co A, van Vliet S, Ackermann M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190080.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol. 2006;157:206–12.

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 2005;59:379–405.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. 2017;6:e24669.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Yi X, Dean AM. Phenotypic plasticity as an adaptation to a functional trade-off. Elife. 2016;5:e19307.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Auer GK, Oliver PM, Rajendram M, Lin T-Y, Yao Q, Jensen GJ, et al. Bacterial swarming reduces Proteus mirabilis and Vibrio parahaemolyticus cell stiffness and increases β-Lactam susceptibility. mBio. 2019;10:e00210–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Kaiser D. Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol. 2007;17:R561–R70.

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007;189:950–7.

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Dong T, Joyce C, Schellhorn H. The role of RpoS in bacterial adaptation. In: El-Sharoud W, editor. Bacterial physiology. Heidelberg: Springer, Berlin; 2008. pp 313-37.

  • 58.

    Phaiboun A, Zhang Y, Park B, Kim M. Survival kinetics of starving bacteria is biphasic and density-dependent. PLoS Comput Biol. 2015;11:e1004198.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol. 2002;46:813–26.

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol. 2006;188:3175–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Lok T, Overdijk O, Piersma T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett. 2015;11:20140944.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016;2:e1500931.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Rankin MA, Burchsted JCA. The cost of migration in insects. Annu Rev Entomol. 1992;37:533–59.

    Google Scholar 

  • 64.

    Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020;117:595–601.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Amsler CD, Cho M, Matsumura P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol. 1993;175:6238–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Yokota T, Gots JS. Requirement of adenosine 3’, 5’-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970;103:513–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol. 1999;181:7500–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Silverman M, Simon M. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol. 1974;120:1196–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008;30:542–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.

  • 71.

    Ferrières L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 2003;50:1665–82.

    PubMed 

    Google Scholar 

  • 72.

    Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37:849–71.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    J-WAFS launches Food and Climate Systems Transformation Alliance

    Radio-frequency wave scattering improves fusion simulations