in

Spatial variation in avian phenological response to climate change linked to tree health

[adace-ad id="91168"]
  • 1.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    CAS 

    Google Scholar 

  • 3.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Google Scholar 

  • 4.

    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    Google Scholar 

  • 5.

    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  • 6.

    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Google Scholar 

  • 7.

    Chevin, L. M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160138 (2017).

    Google Scholar 

  • 8.

    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).

    Google Scholar 

  • 9.

    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).

    Google Scholar 

  • 10.

    Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    CAS 

    Google Scholar 

  • 11.

    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    Google Scholar 

  • 12.

    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    Google Scholar 

  • 13.

    Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    Google Scholar 

  • 14.

    Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).

    Google Scholar 

  • 15.

    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    CAS 

    Google Scholar 

  • 16.

    Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Change Biol. 24, 823–835 (2018).

    Google Scholar 

  • 17.

    Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).

    Google Scholar 

  • 18.

    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    CAS 

    Google Scholar 

  • 19.

    Todd, B. D., Scott, D. E., Pechmann, J. H. K. & Whitfield Gibbons, J. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc. R. Soc. Lond. B Biol. Sci. 278, 2191–2197 (2011).

    Google Scholar 

  • 20.

    Taylor, S. G. Climate warming causes phenological shift in pink salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob. Change Biol. 14, 229–235 (2008).

    Google Scholar 

  • 21.

    Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).

    CAS 

    Google Scholar 

  • 22.

    Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 2467–2473.e4 (2018).

    CAS 

    Google Scholar 

  • 23.

    Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3161–3176 (2010).

    Google Scholar 

  • 24.

    Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).

    Google Scholar 

  • 25.

    Keogan, K. et al. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat. Clim. Change 8, 313–317 (2018).

    Google Scholar 

  • 26.

    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).

    CAS 

    Google Scholar 

  • 27.

    Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).

    Google Scholar 

  • 28.

    Cresswell, W. & McCleery, R. How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72, 356–366 (2003).

    Google Scholar 

  • 29.

    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B Biol. Sci. 265, 1867–1870 (1998).

    Google Scholar 

  • 30.

    Sanz, J. J., Potti, J., Moreno, J., Merino, S. & Frías, O. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob. Change Biol. 9, 461–472 (2003).

    Google Scholar 

  • 31.

    Marrot, P., Charmantier, A., Blondel, J. & Garant, D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. J. Anim. Ecol. 87, 754–764 (2018).

    Google Scholar 

  • 32.

    Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).

    Google Scholar 

  • 33.

    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    Google Scholar 

  • 34.

    Pearce-Higgins, J. W., Yalden, D. W. & Whittingham, M. J. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia 143, 470–476 (2005).

    CAS 

    Google Scholar 

  • 35.

    Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).

    Google Scholar 

  • 36.

    Husby, A. et al. Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations. Evolution 64, 2221–2237 (2010).

    Google Scholar 

  • 37.

    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).

    Google Scholar 

  • 38.

    Fisher, J. I., Mustard, J. F. & Vadeboncoeur, M. A. Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sens. Environ. 100, 265–279 (2006).

    Google Scholar 

  • 39.

    Duparc, A. et al. Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl. Veg. Sci. 16, 305–316 (2013).

    Google Scholar 

  • 40.

    Hinks, A. E. et al. Scale-dependent phenological synchrony between songbirds and their caterpillar food source. Am. Nat. 186, 84–97 (2015).

    Google Scholar 

  • 41.

    Lambrechts, M. M., Blondel, J., Maistre, M. & Perret, P. A single response mechanism is responsible for evolutionary adaptive variation in a bird’s laying date. Proc. Natl Acad. Sci. USA 94, 5153–5155 (1997).

    CAS 

    Google Scholar 

  • 42.

    Dawson, A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1621–1633 (2008).

    Google Scholar 

  • 43.

    Visser, M. E. et al. Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3113–3127 (2010).

    CAS 

    Google Scholar 

  • 44.

    Caro, S. P., Schaper, S. V., Hut, R. A., Ball, G. F. & Visser, M. E. The case of the missing mechanism: how does temperature influence seasonal timing in endotherms? PLoS Biol. 11, e1001517 (2013).

    CAS 

    Google Scholar 

  • 45.

    Bourgault, P., Thomas, D., Perret, P. & Blondel, J. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010).

    Google Scholar 

  • 46.

    Bison, M. et al. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol. Evol. 10, 10219–10229 (2020).

    Google Scholar 

  • 47.

    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190454 (2020).

    Google Scholar 

  • 48.

    Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141611 (2014).

    Google Scholar 

  • 49.

    Lönnstedt, O. M., McCormick, M. I., Chivers, D. P. & Ferrari, M. C. O. Habitat degradation is threatening reef replenishment by making fish fearless. J. Anim. Ecol. 83, 1178–1185 (2014).

    Google Scholar 

  • 50.

    Pellerin, F., Cote, J., Bestion, E. & Aguilée, R. Matching habitat choice promotes species persistence under climate change. Oikos 128, 221–234 (2019).

    Google Scholar 

  • 51.

    Firth, J. A., Verhelst, B. L., Crates, R. A., Garroway, C. J. & Sheldon, B. C. Spatial, temporal and individual-based differences in nest-site visits and subsequent reproductive success in wild great tits. J. Avian Biol. 49, e01740 (2018).

    Google Scholar 

  • 52.

    Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).

    Google Scholar 

  • 53.

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).

    CAS 

    Google Scholar 

  • 54.

    Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. Lond. B Biol. Sci. 276, 2769–2777 (2009).

    CAS 

    Google Scholar 

  • 55.

    Cole, E. F. & Sheldon, B. C. The shifting phenological landscape: within- and between-species variation in leaf emergence in a mixed-deciduous woodland. Ecol. Evol. 7, 1135–1147 (2017).

    Google Scholar 

  • 56.

    Wint, W. The role of alternative host-plant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera: Geometridae). J. Anim. Ecol. 52, 439–450 (1983).

    Google Scholar 

  • 57.

    Keller, L. F. & van Noordwijk, A. J. Effects of local environmental conditions on nestling growth in the great tit Parus major L. Ardea 82, 349–362 (1994).

    Google Scholar 

  • 58.

    Wilkin, T. A., Garant, D., Gosler, A. G. & Sheldon, B. C. Density effects on life-history traits in a wild population of the great tit Parus major: analyses of long-term data with GIS techniques. J. Anim. Ecol. 75, 604–615 (2006).

    Google Scholar 

  • 59.

    Wilkin, T. A. & Sheldon, B. C. Sex differences in the persistence of natal environmental effects on life histories. Curr. Biol. 19, 1998–2002 (2009).

    CAS 

    Google Scholar 

  • 60.

    Gagen, M. et al. The tree ring growth histories of UK native oaks as a tool for investigating chronic oak decline: an example from the Forest of Dean. Dendrochronologia 55, 50–59 (2019).

    Google Scholar 

  • 61.

    Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).

    Google Scholar 

  • 62.

    MacColl, A. D. C. The ecological causes of evolution. Trends Ecol. Evol. 26, 514–522 (2011).

    Google Scholar 

  • 63.

    Grant, P. R. & Price, T. D. Population variation in continuously varying traits as an ecological genetics problem. Integr. Comp. Biol. 21, 795–811 (1981).

    Google Scholar 

  • 64.

    Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173, 579–588 (2009).

    Google Scholar 

  • 65.

    Hadfield, J. D. The spatial scale of local adaptation in a stochastic environment. Ecol. Lett. 19, 780–788 (2016).

    Google Scholar 

  • 66.

    Porlier, M. et al. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between- and within-population comparisons. J. Anim. Ecol. 81, 1041–1051 (2012).

    Google Scholar 

  • 67.

    Hidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M. & Peters, A. Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. J. Anim. Ecol. 88, 1799–1811 (2019).

    Google Scholar 

  • 68.

    Caro, S. P., Lambrechts, M. M., Balthazart, J. & Perret, P. Non-photoperiodic factors and timing of breeding in blue tits: impact of environmental and social influences in semi-natural conditions. Behav. Process. 75, 1–7 (2007).

    CAS 

    Google Scholar 

  • 69.

    Bourret, A., Bélisle, M., Pelletier, F. & Garant, D. Multidimensional environmental influences on timing of breeding in a tree swallow population facing climate change. Evol. Appl. 8, 933–944 (2015).

    Google Scholar 

  • 70.

    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS 

    Google Scholar 

  • 71.

    Morris, D. W. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13 (2003).

    Google Scholar 

  • 72.

    Long, R. A. et al. Linking habitat selection to fitness-related traits in herbivores: the role of the energy landscape. Oecologia 181, 709–720 (2016).

    Google Scholar 

  • 73.

    Morris, D. W. Spatial scale and the cost of density-dependent habitat selection. Evol. Ecol. 1, 379–388 (1987).

    Google Scholar 

  • 74.

    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).

    Google Scholar 

  • 75.

    Ponchon, A., Garnier, R., Grémillet, D. & Boulinier, T. Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Divers. Distrib. 21, 88–100 (2015).

    Google Scholar 

  • 76.

    Nilsson, A. L. K. et al. Hydrology influences breeding time in the white-throated dipper. BMC Ecol. 20, 70 (2020).

    Google Scholar 

  • 77.

    Nilsson, A. L. K. et al. Location is everything, but climate gets a share: analyzing small-scale environmental influences on breeding success in the white-throated dipper. Front. Ecol. Evol. 8, 542846 (2020).

    Google Scholar 

  • 78.

    Martin, R. O., Cunningham, S. J. & Hockey, P. A. R. Elevated temperatures drive fine-scale patterns of habitat use in a savanna bird community. Ostrich 86, 127–135 (2015).

    Google Scholar 

  • 79.

    Bailey, L. D. et al. Habitat selection can reduce effects of extreme climatic events in a long-lived shorebird. J. Anim. Ecol. 88, 1474–1485 (2019).

    Google Scholar 

  • 80.

    Kirby, K. J. et al. Changes in the tree and shrub layer of Wytham Woods (southern England) 1974–2012: local and national trends compared. Forestry 87, 663–673 (2014).

    Google Scholar 

  • 81.

    Perrins, C. & McCleery, R. Laying dates and clutch size in the great tit. Wilson Bull. 101, 236–253 (1989).

    Google Scholar 

  • 82.

    Wilkin, T. A., Perrins, C. M. & Sheldon, B. C. The use of GIS in estimating spatial variation in habitat quality: a case study of lay-date in the great tit Parus major. Ibis 149, 110–118 (2007).

    Google Scholar 

  • 83.

    Perrins, C. M. Population fluctuations and clutch-size in the great tit, Parus major L. J. Anim. Ecol. 34, 601–647 (1965).

    Google Scholar 

  • 84.

    Wesołowski, T. & Rowiński, P. Timing of bud burst and tree-leaf development in a multispecies temperate forest. For. Ecol. Manage. 237, 387–393 (2006).

    Google Scholar 

  • 85.

    Gibson, C. W. D. in Woodland Conservation and Research in the Clay Vale of Oxfordshire and Buckinghamshire (eds Kirby, K. J. & Write, F. J.) 32–40 (JNCC, 1988).

  • 86.

    Dawkin, H. C. & Field, D. R. B. A Long-Term Surveillance System for British Woodland Vegetation. Commonwealth Forestry Institute, Oxford, Occasional Paper No. 1. (1978).

  • 87.

    Horsfall, A. S. & Kirby, K. J. The Use of Permanent Quadrats to Record Changes in the Structure and Composition of Wytham Woods, Oxfordshire Research and Survey in Nature Conservation No. 1 (JNCC, 1992).

  • 88.

    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).

    Google Scholar 

  • 89.

    Van Noordwijk, M. & Purnomosidhi, P. Root architecture in relation to tree–soil–crop interactions and shoot pruning in agroforestry. Agrofor. Syst. 30, 161–173 (1995).

    Google Scholar 

  • 90.

    Bailey, L. D. & van de Pol, M. climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).

    Google Scholar 

  • 91.

    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).

    Google Scholar 

  • 92.

    Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).

    Google Scholar 

  • 93.

    Oksanen, J. et al. vegan: Community Ecology Package: R Package v.2.5-6 (2019); https://CRAN.R-project.org/package=vegan

  • 94.

    Sturges, H. A. The choice of a class interval. J. Am. Stat. Assoc. 21, 65–66 (1926).

    Google Scholar 

  • 95.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. https://doi.org/10.18637/jss.v033.i02 (2010).

  • 96.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.R-project.org/


  • Source: Ecology - nature.com

    Dynamic carbon flux network of a diverse marine microbial community

    Genetic purging in captive endangered ungulates with extremely low effective population sizes