in

Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

[adace-ad id="91168"]
  • 1.

    Vaganov, E. A. et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400(6740), 149–151. https://doi.org/10.1038/22087 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Impacts of a Warming Arctic—Arctic Climate Impact Assessment (ACIA). 144 (Cambridge University Press, 2004).

  • 3.

    Apps, M. J., Shvidenko, A. Z. & Vaganov, E. A. Boreal forests and the environment: A mitigation and adaptation strategies for global change. BFE. 11(1), 1–4 (2006).

    Google Scholar 

  • 4.

    Fedotov, A. P. et al. A reconstruction of the thawing of the permafrost during the last 170 years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 98–99, 139–152 (2002).

    Google Scholar 

  • 5.

    Kharuk, V. I., Dvinskaya, M. L. & Ranson, J. Fire return intervals within the northern boundary of the larch forest in Central Siberia. Int. J. Wildland Fire 22(2), 207–211. https://doi.org/10.1071/WF11181 (2011).

    Article 

    Google Scholar 

  • 6.

    Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6(2), eaax330. https://doi.org/10.1126/sciadv.aax3308 (2020).

    Article 

    Google Scholar 

  • 8.

    Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the permafrost zone of Siberia. Environ. Res. Lett. 15, 034061. https://doi.org/10.1088/1748-9326/ab7469 (2020).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Fritts, H. C. Tree-Rings and Climate 567 (Academic Press, 1976).

    Google Scholar 

  • 10.

    Schweingruber, F. H. Tree Rings and Environment Dendroecology (Paul Haupt Publ, 1996).

    Google Scholar 

  • 11.

    Hughes, M. K., Vaganov, E. A., Shiyatov, S. G., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 603–608 (1999).

    Article 

    Google Scholar 

  • 12.

    Briffa, K. R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Naurzbaev, M., Vaganov, E. A., Sidorova, O. V. & Schweingruber, F. H. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12(6), 727–736 (2002).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Grudd, H. Torneträsk tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857 (2008).

    Article 

    Google Scholar 

  • 15.

    Sidorova, O. V., Siegwolf, R., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology. Geophys. Res. Biogeosci. 113, G02019. https://doi.org/10.1029/2007JG000473 (2008).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16, 1003–1018. https://doi.org/10.1111/j.1365-2486.2009.02008.x (2010).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Sidorova, O. V. et al. Is the 20th century warming unprecedented in the Siberian north?. Quat. Sci. Rev. 73, 93–102. https://doi.org/10.1016/j.quascirev.2013.05.015 (2013).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density an δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252, 31–41. https://doi.org/10.1016/j.chemgeo.2008.01.023 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H. & Jungner, H. Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J. Quat. Sci. 24(5), 469–480 (2009).

    Article 

    Google Scholar 

  • 20.

    Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 62, 97–113 (2013).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Churakova (Sidorova), O. V. et al. Recent atmospheric drying in Siberia is not unprecedented over the last 1500 years. Sci. Rep. 10, 15024 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).

    Article 

    Google Scholar 

  • 23.

    Saurer, M., Schweingruber, F., Vaganov, E. A., Shiyatov, S. G. & Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. https://doi.org/10.1029/2001GL013739 (2002).

    Article 

    Google Scholar 

  • 24.

    Saurer, M. et al. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J. Geophys. Res. 117, D05118. https://doi.org/10.1029/2011JD016861 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Butzin, M. et al. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos. Chem. Phys. 14, 5853–5869 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Wang, J. et al. Impacts of the Siberian High and Arctic Oscillation on the East Asia winter monsoon: Driving down welling in the western Bering Sea Aquatic Ecosystem. Health Manag. 15(1), 20–30. https://doi.org/10.1080/14634988.2012.648860 (2012).

    Article 

    Google Scholar 

  • 30.

    Buermann, W. et al. Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El-Nino-Southern Oscillation and the Arctic Oscillation. J. Geophys. Res. 108(D13), 4396. https://doi.org/10.1029/2002JD002630 (2003).

    Article 

    Google Scholar 

  • 31.

    Baltzer, H. et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022526 (2005).

    Article 

    Google Scholar 

  • 32.

    Zhang, J. et al. Analysis of the positive Arctic Oscillation index event and its influence in the winter and spring of 2019/2020. Front. Earth Sci. https://doi.org/10.3389/feart.2020.580601 (2021).

    Article 

    Google Scholar 

  • 33.

    Zielinski, G. A. Use of paleo-records in determining variability within the volcanism- climate system. Quat. Sci. Rev. 19, 417–438 (2000).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Panuyshkina, I. P. & Arbatskaya, M. K. Dendrochronological approach to study flammability of forests in Evenkia (Siberia). Sib. Ecol. J. 2, 167–173 (1999).

    Google Scholar 

  • 35.

    Valendik, E. N., Kisilyakhov, E. K., Rizova, V. A., Ponamarev, E. I. & Danilova, I. V. Large fires in taiga landscape of Central Siberia. Geogr. Nat. Resour. 14(1), 52–59 (2014).

    Google Scholar 

  • 36.

    Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past. 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).

    Article 

    Google Scholar 

  • 37.

    Churakova (Sidorova), O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. https://doi.org/10.5194/cp-2018-70.y (2019).

    Article 

    Google Scholar 

  • 38.

    Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M. & Valendik, E. N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Eurasian J. For. Res. 2, 1–15 (2001).

    Google Scholar 

  • 39.

    Keller, K. M. et al. 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    D’Arrigo, R. D., Cook, E. R., Mann, M. E. & Jacoby, G. C. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650. Geophys. Res. Lett. 30(11), 1549. https://doi.org/10.1029/2003GL017250 (2003).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Kress, A. et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 41, 1732–1737. https://doi.org/10.1002/2013GL059081 (2014).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196. https://doi.org/10.1038/s41561-021-00698-0 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Kodera, K. & Kuroda, Y. Regional and hemispheric circulation patterns in the northern hemisphere winter, or the NAO and AO. Geophys. Res. Lett. 30(18), 2003. https://doi.org/10.1029/2003GL017290 (1934).

    Article 

    Google Scholar 

  • 44.

    Abaimov, A. P., Bondarev, A. I., Ziryanova, O. A. & Shitova, S. A. Forest Krasnoyarsk Polar (Nauka, 1997).

    Google Scholar 

  • 45.

    Ary-Mas Natural Conditions, Flora and Vegetation. (eds. Norin, B.N.) (Nauka, Leningrad, 1978).

  • 46.

    Ogi, M., Yamazaki, K. & Tachibana, Y. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res. 109, D20114 (2004).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Gagen, M. H., McCarroll, D., Loader, N. J., Robertson, I. & Jalkanen, R. Exorcising the ‘segment length curse’ summer temperature reconstruction since AD 1640 using non de-trend stable carbon isotope ratios from line trees in northern Finland. Holocene 17, 433–444 (2007).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).

    Article 

    Google Scholar 

  • 49.

    Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(29), 2233–2244. https://doi.org/10.1002/rcm.7388 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B51, 170–193 (1999).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community