in

Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

[adace-ad id="91168"]
  • 1.

    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, Oxford, 1996).

    Google Scholar 

  • 2.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).

    Google Scholar 

  • 3.

    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Kozlowski, J. Why life histories are diverse. Polish J. Ecol. 54, 585–605 (2006).

    Google Scholar 

  • 5.

    Ejsmond, M. J., Varpe, Ø., Czarnoleski, M. & Kozłowski, J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am. Nat. 186, E111–E125 (2015).

    Article  Google Scholar 

  • 6.

    Filipiak, M. A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees-the application of ecological stoichiometry. Insects 9, 85 (2018).

    PubMed Central  Article  Google Scholar 

  • 7.

    Filipiak, Z. M. & Filipiak, M. The scarcity of specific nutrients in wild bee larval food negatively influences certain life history traits. Biology (Basel). 9, 462 (2020).

  • 8.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).

    Google Scholar 

  • 9.

    Bärlocher, F. & Rennenberg, H. Food chains and nutrient cycles. In Ecological biochemistry (eds Krauss, G. J. & Nies, D. H.) 92–122 (Wiley, New York, 2014).

    Google Scholar 

  • 10.

    DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Springer Netherlands, Amsterdam, 1992).

    Google Scholar 

  • 11.

    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry (Academic Press, London, 2020).

    Google Scholar 

  • 12.

    Jeyasingh, P. D., Cothran, R. D. & Tobler, M. Testing the ecological consequences of evolutionary change using elements. Ecol. Evol. 4, 528–538 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Jeyasingh, P. D., Goos, J. M., Thompson, S. K., Godwin, C. M. & Cotner, J. B. Ecological stoichiometry beyond redfield: An ionomic perspective on elemental homeostasis. Front. Microbiol. 8, 722 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    González, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Funct. Ecol. 32, 2448–2463 (2018).

    Article  Google Scholar 

  • 15.

    Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).

    Article  Google Scholar 

  • 17.

    Kay, A. D. et al. Toward a stoichiometric framework for evolutionary biology. Oikos 109, 6–17 (2005).

    Article  Google Scholar 

  • 18.

    Cherif, M. et al. An operational framework for the advancement of a molecule-to-biosphere stoichiometry theory. Front. Mar. Sci. 4, 1–16 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Lemoine, N. P., Giery, S. T. & Burkepile, D. E. Differing nutritional constraints of consumers across ecosystems. Oecologia 174, 1367–1376 (2014).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Morehouse, N. I., Nakazawa, T., Booher, C. M., Jeyasingh, P. D. & Hall, M. D. Sex in a material world: Why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119, 766–778 (2010).

    Article  Google Scholar 

  • 23.

    Filipiak, M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J. Appl. Ecol. 56, 1410–1418 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Goos, J. M., Cothran, R. D. & Jeyasingh, P. D. Within-population variation in the chemistry of life: The stoichiometry of sexual dimorphism in multiple dimensions. Evol. Ecol. 31, 635–651 (2017).

    Article  Google Scholar 

  • 25.

    Halvorson, H. M., Scott, J. T., Sanders, A. J. & Evans-White, M. A. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw. Sci. 34, 508–518 (2015).

    Article  Google Scholar 

  • 26.

    Meunier, C. L. et al. From elements to function: Toward unifying ecological stoichiometry and trait-based ecology. Front. Environ. Sci. 5, 1–10 (2017).

    Article  Google Scholar 

  • 27.

    Sperfeld, E., Wagner, N. D., Halvorson, H. M., Malishev, M. & Raubenheimer, D. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 31, 286–296 (2017).

    Article  Google Scholar 

  • 28.

    Filipiak, M. & Weiner, J. Plant–insect interactions: The role of ecological stoichiometry. Acta Agrobot. 70, 1–16 (2017).

    Article  Google Scholar 

  • 29.

    Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. Organism size, life history, and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 46, 674–684 (1996).

    Article  Google Scholar 

  • 30.

    Polidori, C. et al. Strong phylogenetic constraint on transition metal incorporation in the mandibles of the hyper-diverse Hymenoptera (Insecta). Org. Divers. Evol. https://doi.org/10.1007/s13127-020-00448-x (2020).

    Article  Google Scholar 

  • 31.

    Bosch, J., Sgolastra, F. & Kemp, W. P. Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In Bee Pollination in Agricultural Eco-systems (eds James, R. & Pitts-Singer, T. L.) 83–105 (Oxford Scholarship Online, Oxford, 2008).

    Google Scholar 

  • 32.

    Giejdasz, K. & Wilkaniec, Z. Individual development of the red mason bee (Osmia rufa L., Megachilidae) under natural and laboratory conditions. J. Apic. Sci. 46, 51–57 (2002).

    Google Scholar 

  • 33.

    Gruber, B., Eckel, K., Everaars, J. & Dormann, C. F. On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie 42, 564–576 (2011).

    Article  Google Scholar 

  • 34.

    Kaspari, M. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 23, 1153–1168 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Rizzuto, M. et al. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare (Lepus americanus). Ecol. Evol. 9, 14453–14464 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Sitters, J. & Olde Venterink, H. The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant Soil 396, 421–426 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Sitters, J. et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).

    ADS  Article  Google Scholar 

  • 38.

    Sitters, J. et al. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences. Front. Earth Sci. 5, 1–8 (2017).

    Article  Google Scholar 

  • 39.

    González, A. L., Fariña, J. M., Kay, A. D., Pinto, R. & Marquet, P. A. Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120, 1247–1255 (2011).

    Article  Google Scholar 

  • 40.

    Seidelmann, K. Optimal progeny body size in a solitary bee, Osmia bicornis (Apoidea: Megachilidae). Ecol. Entomol. 39, 656–663 (2014).

    Article  Google Scholar 

  • 41.

    Kim, J. Y. Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol. Entomol. 22, 275–282 (1997).

    Article  Google Scholar 

  • 42.

    Markow, T. et al. Elemental stoichiometry of Drosophila and their hosts. Funct. Ecol. 13, 78–84 (1999).

    Article  Google Scholar 

  • 43.

    Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Werner, A. & Kinne, R. K. H. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R301–R312 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Morgan, A. J., Kille, P. & Stürzenbaum, S. R. Microevolution and ecotoxicology of metals in invertebrates. Environ. Sci. Technol. 41, 1085–1096 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Bednarska, A. J., Świątek, Z. M. & Labecka, A. M. Effects of cadmium bioavailability in food on its distribution in different tissues in the ground beetle Pterostichus oblongopunctatus. Bull. Environ. Contam. Toxicol. 103, 421–427 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Świątek, Z. M. & Bednarska, A. J. Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ. Sci. Pollut. Res. Int. 26, 24933–24945 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Cohen, A. C. Insect Diets: Science and Technology (CRC Press, Boca Raton, 2005).

    Google Scholar 

  • 49.

    Seidelmann, K. Optimal resource allocation, maternal investment, and body size in a solitary bee, Osmia bicornis. Entomol. Exp. Appl. 166, 790–799 (2018).

    Article  Google Scholar 

  • 50.

    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33 (2006).

    Article  Google Scholar 

  • 51.

    Seidelmann, K., Ulbrich, K. & Mielenz, N. Conditional sex allocation in the Red Mason bee, Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347 (2010).

    Article  Google Scholar 

  • 52.

    González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).

    Article  Google Scholar 

  • 53.

    Lemmen, K. D., Butler, O. M., Koffel, T., Rudman, S. M. & Symons, C. C. Stoichiometric traits vary widely within species: A meta-analysis of common garden experiments. Front. Ecol. Evol. 7, 1–15 (2019).

    Article  Google Scholar 

  • 54.

    Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Sherman, R. E., Chowdhury, P. R., Baker, K. D., Weider, L. J. & Jeyasingh, P. D. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria. R. Soc. Open Sci. 4, 170770 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Zajitschek, F. & Connallon, T. Partitioning of resources: The evolutionary genetics of sexual conflict over resource acquisition and allocation. J. Evol. Biol. 30, 826–838 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Moe, S. J. et al. Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos 109, 29–39 (2005).

    Article  Google Scholar 

  • 58.

    Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 56, 613–622 (2008).

    Google Scholar 

  • 59.

    Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).

    Article  Google Scholar 

  • 60.

    Jeyasingh, P. D., Goos, J. M., Lind, P. R., Roy Chowdhury, P. & Sherman, R. E. Phosphorus supply shifts the quotas of multiple elements in algae and Daphnia: Ionomic basis of stoichiometric constraints. Ecol. Lett. 23, 1064–1072 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Ruedenauer, F. A. et al. Best be (e) on low fat: Linking nutrient perception, regulation and fitness. Ecol. Lett. 23, 545–554 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Trinkl, M. et al. Floral species richness correlates with changes in the nutritional quality of larval diets in a stingless bee. Insects 11, E125 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Roswell, M., Dushoff, J. & Winfree, R. Male and female bees show large differences in floral preference. PLoS ONE 14, e0214909 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Vaudo, A. D. et al. Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132 (2020).

    PubMed Central  Article  Google Scholar 

  • 65.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 66.

    Smilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 (Cambridge University Press, Cambridge, 2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)