in

Terrestrial mesopredators did not increase after top-predator removal in a large-scale experimental test of mesopredator release theory

[adace-ad id="91168"]
  • 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471(7336), 51–57 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 151–163 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Haswell, P. M., Kusak, J. & Hayward, M. W. Large carnivore impacts are context-dependent. Food Webs 12, 3–13. https://doi.org/10.1016/j.fooweb.2016.02.005 (2017).

    Article 

    Google Scholar 

  • 4.

    Barbosa, P. & Castellanos, I. Ecology of Predator–Prey Interactions (Oxford University Press, 2005).

    Google Scholar 

  • 5.

    Terborgh, J. & Estes, J. A. Trophic Cascades: Predator, Prey, and the Changing Dynamics of Nature (Island Press, 2010).

    Google Scholar 

  • 6.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12(9), 982–998. https://doi.org/10.1111/j.1461-0248.2009.01347.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Jachowski, D. S. et al. Identifying mesopredator release in multi-predator systems: A review of evidence from North America. Mamm. Rev. 50, 367–381. https://doi.org/10.1111/mam.12207 (2020).

    Article 

    Google Scholar 

  • 10.

    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87(2), 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 11.

    Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80(3), 387–401 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Allen, B. L. et al. Can we save large carnivores without losing large carnivore science?. Food Webs. 12, 64–75 (2017).

    Article 

    Google Scholar 

  • 13.

    Allen, B. L. & Leung, K.-P. The (non)effects of lethal population control on the diet of Australian dingoes. PLoS ONE 9(9), e108251. https://doi.org/10.1371/journal.pone.0108251 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Wallach, A. D. Australia should enlist dingoes to control invasive species. The Conversation 2014. https://theconversation.com/australia-should-enlist-dingoes-to-control-invasive-species-24807. Accessed 26 March, 2014.

  • 15.

    Letnic, M. & Feit, B. Like cats and dogs: dingoes can keep feral cats in check. The Conversation. 2019. https://theconversation.com/like-cats-and-dogs-dingoes-can-keep-feral-cats-in-check-114748. Accessed 4 April 2019.

  • 16.

    Newsome, T. Thinking big gives top predators the competitive edge. The Conversation 2017. https://theconversation.com/thinking-big-gives-top-predators-the-competitive-edge-78106. Accessed 24 May 2017.

  • 17.

    Johnson, C. & VanDerWal, J. Evidence that dingoes limit the abundance of a mesopredator in eastern Australian forests. J Appl Ecol. 46, 641–646 (2009).

    Article 

    Google Scholar 

  • 18.

    Rolls, E. C. They All Ran Wild: The Animals and Plants that Plague Australia (Angus & Robertson Publishers, 1969).

    Google Scholar 

  • 19.

    Balme, J., O’Connor, S. & Fallon, S. New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia. Sci. Rep. 8(1), 9933. https://doi.org/10.1038/s41598-018-28324-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Fleming, P. J. S., Allen, B. L. & Ballard, G. Seven considerations about dingoes as biodiversity engineers: The socioecological niches of dogs in Australia. Aust. Mammal. 34(1), 119–131 (2012).

    Article 

    Google Scholar 

  • 21.

    Corbett, L. K. The Dingo in Australia and Asia 2nd edn. (J.B. Books, South Australia, 2001).

    Google Scholar 

  • 22.

    Fleming, P. J. S. et al. Management of wild canids in Australia: Free-ranging dogs and red foxes. In Carnivores of Australia: Past, Present and Future (eds Glen, A. S. & Dickman, C. R.) 105–149 (CSIRO Publishing, 2014).

    Google Scholar 

  • 23.

    Doherty, T. S. et al. Impacts and management of feral cats Felis catus in Australia. Mamm. Rev. 42, 83–97 (2017).

    Article 

    Google Scholar 

  • 24.

    Brook, L. A., Johnson, C. N. & Ritchie, E. G. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J. Appl. Ecol. 49(6), 1278–1286. https://doi.org/10.1111/j.1365-2664.2012.02207.x (2012).

    Article 

    Google Scholar 

  • 25.

    Letnic, M., Koch, F., Gordon, C., Crowther, M. & Dickman, C. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. B Biol. Sci. 276, 3249–3256 (2009).

    Article 

    Google Scholar 

  • 26.

    Wallach, A. D., Johnson, C. N., Ritchie, E. G. & O’Neill, A. J. Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008–1018 (2010).

    PubMed 

    Google Scholar 

  • 27.

    Leo, V., Reading, R. P., Gordon, C. & Letnic, M. Apex predator suppression is linked to restructuring of ecosystems via multiple ecological pathways. Oikos 128, 630–639. https://doi.org/10.1111/oik.05546 (2019).

    Article 

    Google Scholar 

  • 28.

    Johnson, C. Australia’s Mammal Extinctions: A 50,000 Year History (Cambridge University Press, 2006).

    Google Scholar 

  • 29.

    Read, J. L. & Scoleri, V. Ecological implications of reptile mesopredator release in arid South Australia. J. Herpetol. 49(1), 64–69. https://doi.org/10.1670/13-208 (2015).

    Article 

    Google Scholar 

  • 30.

    Sutherland, D. R., Glen, A. S. & de Tores, P. J. Could controlling mammalian carnivores lead to mesopredator release of carnivorous reptiles?. Proc. R. Soc. B 278(1706), 641–648. https://doi.org/10.1098/rspb.2010.2103 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Davis, N. E. et al. Interspecific and geographic variation in the diets of sympatric carnivores: Dingoes/wild dogs and red foxes in south-eastern Australia. PLoS ONE 10(3), e0120975. https://doi.org/10.1371/journal.pone.0120975 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Paltridge, R. The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory. Wildl. Res. 29, 389–403 (2002).

    Article 

    Google Scholar 

  • 33.

    Cupples, J. B., Crowther, M. S., Story, G. & Letnic, M. Dietary overlap and prey selectivity among sympatric carnivores: Could dingoes suppress foxes through competition for prey?. J. Mammal. 92(3), 590–600. https://doi.org/10.1644/10-MAMM-A-164.1 (2011).

    Article 

    Google Scholar 

  • 34.

    Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Aust. Ecol. 36(3), 290–296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).

    Article 

    Google Scholar 

  • 35.

    Moseby, K. E., Neilly, H., Read, J. L. & Crisp, H. A. Interactions between a top order predator and exotic mesopredators in the Australian rangelands. Int. J. Ecol. 2012; Article ID 250352.

  • 36.

    Allen, B. L. & Fleming, P. J. S. Reintroducing the dingo: The risk of dingo predation to threatened vertebrates of western New South Wales. Wildl. Res. 39(1), 35–50 (2012).

    Article 

    Google Scholar 

  • 37.

    Glen, A. S. & Woodman, A. P. What Impact Does Altering Dingo Populations Have on Trophic Structure? (Environmental Evidence Australia, 2013).

    Google Scholar 

  • 38.

    Allen, B. L., Allen, L. R. & Leung, K.-P. Interactions between two naturalised invasive predators in Australia: Are feral cats suppressed by dingoes?. Biol. Invasions 17, 761–776. https://doi.org/10.1007/s10530-014-0767-1 (2015).

    Article 

    Google Scholar 

  • 39.

    Arthur, A. D., Catling, P. C. & Reid, A. Relative influence of habitat structure, species interactions and rainfall on the post-fire population dynamics of ground-dwelling vertebrates. Aust. Ecol. 37(8), 958–970 (2013).

    Article 

    Google Scholar 

  • 40.

    Claridge, A. W., Cunningham, R. B., Catling, P. C. & Reid, A. M. Trends in the activity levels of forest-dwelling vertebrate fauna against a background of intensive baiting for foxes. For. Ecol. Manag. 260(5), 822–832. https://doi.org/10.1016/j.foreco.2010.05.041 (2010).

    Article 

    Google Scholar 

  • 41.

    Stobo-Wilson, A. M. et al. Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Divers. Distrib. 247, 108638. https://doi.org/10.1111/ddi.13065 (2020).

    Article 

    Google Scholar 

  • 42.

    Pavey, C. R., Eldridge, S. R. & Heywood, M. Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. J. Mammal. 89(3), 674–683 (2008).

    Article 

    Google Scholar 

  • 43.

    Greenville, A. C., Wardle, G. M., Tamayo, B. & Dickman, C. R. Bottom-up and top-down processes interact to modify intraguild interactions in resource-pulse environments. Oecologia 175(4), 1349–1358. https://doi.org/10.1007/s00442-014-2977-8 (2014).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Allen, B. L. et al. Does lethal control of top-predators release mesopredators? A re-evaluation of three Australian case studies. Ecol. Manag. Restor. 15(3), 191–195. https://doi.org/10.1111/emr.12118 (2014).

    Article 

    Google Scholar 

  • 45.

    Allen, B. L. et al. As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. Biol. Conserv. 159, 158–174 (2013).

    Article 

    Google Scholar 

  • 46.

    Hayward, M. W. & Marlow, N. Will dingoes really conserve wildlife and can our methods tell?. J. Appl. Ecol. 51(4), 835–838. https://doi.org/10.1111/1365-2664.12250 (2014).

    Article 

    Google Scholar 

  • 47.

    Newsome, T. M., Greenville, A. C., Letnic, M., Ritchie, E. G. & Dickman, C. R. The case for a dingo reintroduction in Australia remains strong: A reply to Morgan et al., 2016. Food Webs https://doi.org/10.1016/j.fooweb.2017.02.001 (2017).

    Article 

    Google Scholar 

  • 48.

    Letnic, M., Crowther, M. S., Dickman, C. R. & Ritchie, E. Demonising the dingo: How much wild dogma is enough?. Curr. Zool. 57(5), 668–670 (2011).

    Article 

    Google Scholar 

  • 49.

    Glen, A. S. Enough dogma: Seeking the middle ground on the role of dingoes. Curr. Zool. 58(6), 856–858 (2012).

    Article 

    Google Scholar 

  • 50.

    Johnson, C. N. et al. Experiments in no-impact control of dingoes: Comment on Allen et al. 2013. Front. Zool. 11, 17 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Nimmo, D. G., Watson, S. J., Forsyth, D. M. & Bradshaw, C. J. A. Dingoes can help conserve wildlife and our methods can tell. J. Appl. Ecol. 52(2), 281–285. https://doi.org/10.1111/1365-2664.12369 (2015).

    Article 

    Google Scholar 

  • 52.

    Allen, B. L. et al. Top-predators as biodiversity regulators: Contemporary issues affecting knowledge and management of dingoes in Australia. In Biodiversity Enrichment in a Diverse World. Chapter 4 (ed. Lameed, G. A.) 85–132 (InTech Publishing, 2012).

    Google Scholar 

  • 53.

    Platt, J. R. Strong inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146(3642), 347–353 (1964).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Caughley, G. Analysis of Vertebrate Populations (Wiley, 1977).

    Google Scholar 

  • 55.

    Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin-Cummings Publishing, 2008).

    Google Scholar 

  • 56.

    Hone, J. Wildlife Damage Control (CSIRO Publishing, 2007).

    Book 

    Google Scholar 

  • 57.

    Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J. Ecological Statistics: Contemporary Theory and Application (Oxford University Press, 2015).

    MATH 
    Book 

    Google Scholar 

  • 58.

    Kershaw, K. A. Quantitative and Dynamic Ecology (Edward Arnold Publishers, 1969).

    Google Scholar 

  • 59.

    Li, J. C. R. Introduction to Statistical Inference (Edwards Bos Distributors, 1957).

    Book 

    Google Scholar 

  • 60.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 61.

    Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and Quasi-experimental Designs for Generalized Casual Inference 2nd edn. (Houghton, Mifflin and Company, 2002).

    Google Scholar 

  • 62.

    Underwood, A. J. Experiments in Ecology (Cambridge University Press, 1997).

    Google Scholar 

  • 63.

    Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L.K.-P. Intraguild relationships between sympatric predators exposed to lethal control: Predator manipulation experiments. Front. Zool. 10, 39 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L.K.-P. Sympatric prey responses to lethal top-predator control: Predator manipulation experiments. Front. Zool. 11, 56 (2014).

    Article 

    Google Scholar 

  • 65.

    Eldridge, S. R., Shakeshaft, B. J. & Nano, T. J. The impact of wild dog control on cattle, native and introduced herbivores and introduced predators in central Australia. Final report to the Bureau of Rural Sciences. Alice Springs: Parks and Wildlife Commission of the Northern Territory; 2002.

  • 66.

    Kennedy, M., Phillips, B., Legge, S., Murphy, S. & Faulkner, R. Do dingoes suppress the activity of feral cats in northern Australia?. Austral Ecol. 37(1), 134–139 (2012).

    Article 

    Google Scholar 

  • 67.

    Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L. K.-P. Reply to the criticism by Johnson et al. (2014) on the report by Allen et al. (2013). Front. Zool. 2014. http://www.frontiersinzoology.com/content/11/1/7/comments#1982699. Accessed 1st June 2014.

  • 68.

    Newsome, T. M. et al. Resolving the value of the dingo in ecological restoration. Restor. Ecol. 23(3), 201–208. https://doi.org/10.1111/rec.12186 (2015).

    Article 

    Google Scholar 

  • 69.

    Glen, A. S., Dickman, C. R., Soulé, M. E. & Mackey, B. G. Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Austral Ecol. 32(5), 492–501 (2007).

    Article 

    Google Scholar 

  • 70.

    Mitchell, B. & Balogh, S. Monitoring techniques for vertebrate pests: wild dogs. Orange: NSW Department of Primary Industries, Bureau of Rural Sciences; 2007.

  • 71.

    Letnic, M. & Koch, F. Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecol. 35(2), 267–175 (2010).

    Article 

    Google Scholar 

  • 72.

    Contos, P. & Letnic, M. Top-down effects of a large mammalian carnivore in arid Australia extend to epigeic arthropod assemblages. J. Arid Environ. (in press). https://doi.org/10.1016/j.jaridenv.2019.03.002.

  • 73.

    Mills, C. H., Wijas, B., Gordon, C. E., Lyons, M., Feit, A., Wilkinson, A., et al. Two alternate states: Shrub, bird and mammal assemblages differ on either side of the Dingo Barrier Fence. Aust Zool. (in press). https://doi.org/10.7882/az.2021.005.

  • 74.

    Engeman, R. M., Allen, L. R. & Allen, B. L. Study design concepts for inferring functional roles of mammalian top predators. Food Webs. 12, 56–63 (2017).

    Article 

    Google Scholar 

  • 75.

    Kennedy, M. S., Kreplins, T. L., O’Leary, R. A. & Fleming, P. A. Responses of dingo (Canis familiaris) populations to landscape-scale baiting. Food Webs. (in press). https://doi.org/10.1016/j.fooweb.2021.e00195.

  • 76.

    Allen, L. R. Is landscape-scale wild dog control best practice?. Australas. J. Environ. Manag. 24(1), 5–15 (2017).

    Article 

    Google Scholar 

  • 77.

    Ballard, G., Fleming, P. J. S., Meek, P. D. & Doak, S. Aerial baiting and wild dog mortality in south-eastern Australia. Wildl. Res. 47(2), 99–105. https://doi.org/10.1071/WR18188 (2020).

    Article 

    Google Scholar 

  • 78.

    Smith, D. & Allen, B. L. Habitat use by yellow-footed rock-wallabies in predator exclusion fences. J. Arid Environ. (in press).

  • 79.

    Smith, D., King, R. & Allen, B. L. Impacts of exclusion fencing on target and non-target fauna: A global review. Biol. Rev. 95(6), 1590–1606 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Smith, D., Waddell, K. & Allen, B. L. Expansion of vertebrate pest exclusion fencing and its potential benefits for threatened fauna recovery in Australia. Animals 10, 1550 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 81.

    Clark, P., Clark, E. & Allen, B. L. Sheep, dingoes and kangaroos: New challenges and a change of direction 20 years on. In Advances in Conservation Through Sustainable Use of Wildlife (eds Baxter, G. et al.) 173–178 (University of Queensland, 2018).

    Google Scholar 

  • 82.

    Allen, L. R. The Impact of Wild Dog Predation and Wild Dog Control on Beef Cattle: Large-Scale Manipulative Experiments Examining the Impact of and Response to Lethal Control (LAP Lambert Academic Publishing, 2013).

    Google Scholar 

  • 83.

    Allen, L. R. Demographic and functional responses of wild dogs to poison baiting. Ecol. Manag. Restor. 16(1), 58–66 (2015).

    Article 

    Google Scholar 

  • 84.

    Eldridge, S. R., Bird, P. L., Brook, A., Campbell, G., Miller, H. A., Read, J. L., et al. The effect of wild dog control on cattle production and biodiversity in the South Australian arid zone: Final report. Port Augusta, South Australia: South Australian Arid Lands Natural Resources Management Board; 2016.

  • 85.

    Fancourt, B. A., Cremasco, P., Wilson, C. & Gentle, M. N. Do introduced apex predators suppress introduced mesopredators? A multiscale spatiotemporal study of dingoes and feral cats in Australia suggests not. J. Appl. Ecol. 56(12), 2584–2595. https://doi.org/10.1111/1365-2664.13514 (2019).

    Article 

    Google Scholar 

  • 86.

    Allen, B. L., Engeman, R. M. & Allen, L. R. Wild dogma I: An examination of recent “evidence” for dingo regulation of invasive mesopredator release in Australia. Curr. Zool. 57(5), 568–583 (2011).

    Article 

    Google Scholar 

  • 87.

    Allen, L. R. & Engeman, R. M. Evaluating and validating abundance monitoring methods in the absence of populations of known size: Review and application to a passive tracking index. Environ. Sci. Pollut. Res. 22, 2907–2915. https://doi.org/10.1007/s11356-014-3567-3 (2014).

    Article 

    Google Scholar 

  • 88.

    Caughley, G. Analysis of Vertebrate Populations, reprinted with corrections. (Wiley, 1980).

    Google Scholar 

  • 89.

    Wysong, M. L. et al. Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator. Mov. Ecol. 8(1), 18. https://doi.org/10.1186/s40462-020-00203-z (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27(5), 265–271 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 91.

    Letnic, M. Stop poisoning dingoes to protect native animals. University of New South Wales, Sydney, available at http://newsroom.unsw.edu.au/news/science/stop-poisoning-dingoes-protect-native-mammals. Accessed 1 April 2014: UNSW Newsroom; 2014.

  • 92.

    Ritchie, E. G. The world’s top predators are in decline, and it’s hurting us too. The Conversation. 2014. http://theconversation.com/the-worlds-top-predators-are-in-decline-and-its-hurting-us-too-21830. Accessed 10 January 2014.

  • 93.

    Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).

    Article 

    Google Scholar 

  • 94.

    Laundré, J. W. et al. The landscape of fear: The missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95(5), 1141–1152. https://doi.org/10.1890/13-1083.1 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 95.

    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: How mesopredators avoid costly interactions with apex predators. Oecologia https://doi.org/10.1007/s00442-018-4133-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Colman, N. J., Gordon, C. E., Crowther, M. S. & Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B Biol. Sci. 281(1782), 20133094. https://doi.org/10.1098/rspb.2013.3094 (2014).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Sheriff, M. J., Peacor, S., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302–1316. https://doi.org/10.1111/1365-2656.13213 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 98.

    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs. 12(Supplement C), 14–34. https://doi.org/10.1016/j.fooweb.2017.03.001 (2017).

    Article 

    Google Scholar 

  • 99.

    Wang, Y. & Fisher, D. Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildl. Res. 39, 611–620 (2012).

    Article 

    Google Scholar 

  • 100.

    Hayward, M. W. et al. Ecologists need robust survey designs, sampling and analytical methods. J. Appl. Ecol. 52(2), 286–290. https://doi.org/10.1111/1365-2664.12408 (2015).

    Article 

    Google Scholar 

  • 101.

    Johnson, C. N. & Ritchie, E. The dingo and biodiversity conservation: response to Fleming et al. (2012). Aust. Mammal. 35(1), 8–14 (2013).

    Article 

    Google Scholar 

  • 102.

    Wallach, A. D. & O’Neill, A. J. Threatened species indicate hot-spots of top-down regulation. Anim. Biodivers. Conserv. 32(2), 127–133 (2009).

    Google Scholar 

  • 103.

    Feit, B., Feit, A. & Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems. (in press). https://doi.org/10.1007/s10021-019-00360-2.

  • 104.

    Gordon, C. E., Moore, B. D. & Letnic, M. Temporal and spatial trends in the abundances of an apex predator, introduced mesopredator and ground-nesting bird are consistent with the mesopredator release hypothesis. Biodivers. Conserv. https://doi.org/10.1007/s10531-017-1309-9 (2017).

    Article 

    Google Scholar 

  • 105.

    Letnic, M. et al. Does a top predator suppress the abundance of an invasive mesopredator at a continental scale?. Glob. Ecol. Biogeogr. 20(2), 343–353 (2011).

    Article 

    Google Scholar 

  • 106.

    Rees, J. D., Kingsford, R. T. & Letnic, M. Changes in desert avifauna associated with the functional extinction of a terrestrial top predator. Ecography 42(1), 67–76. https://doi.org/10.1111/ecog.03661 (2019).

    Article 

    Google Scholar 

  • 107.

    Allen, B. L. et al. Large carnivore science: Non-experimental studies are useful, but experiments are better. Food Webs 13, 49–50 (2017).

    Article 

    Google Scholar 

  • 108.

    Allen, B. L., Engeman, R. M. & Allen, L. R. Wild dogma II: The role and implications of wild dogma for wild dog management in Australia. Curr. Zool. 57(6), 737–740 (2011).

    Article 

    Google Scholar 

  • 109.

    Fleming, P. J. S., Allen, B. L. & Ballard, G. Cautionary considerations for positive dingo management: A response to the Johnson and Ritchie critique of Fleming et al. (2012). Aust Mammal. 35(1), 15–22 (2013).

    Article 

    Google Scholar 

  • 110.

    Allen, B. L. Did dingo control cause the elimination of kowaris through mesopredator release effects? A response to Wallach and O’Neill (2009). Anim. Biodivers. Conserv. 33(2), 1–4 (2010).

    Google Scholar 

  • 111.

    Woinarski, J. C. Z. et al. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261. https://doi.org/10.1016/j.biocon.2019.108261 (2019).

    Article 

    Google Scholar 

  • 112.

    Kearney, S. G., Cawardine, J., Reside, A. E., Fisher, D., Maron, M., Doherty, T. S., et al. The threats to Australia’s imperilled species and implications for a national conservation response. Pac. Conserv. Biol. (in press). https://doi.org/10.1071/PC18024.

  • 113.

    Burbidge, A. A. & McKenzie, N. L. Patterns in the modern decline of Western Australia’s vertebrate fauna: Causes and conservation implications. Biol. Conserv. 50, 143–198 (1989).

    Article 

    Google Scholar 

  • 114.

    Lunney, D. Causes of the extinction of native mammals of the western division of New South Wales: An ecological interpretation of the nineteenth century historical record. Rangel. J. 23(1), 44–70 (2001).

    Article 

    Google Scholar 

  • 115.

    Cremona, T., Crowther, M. S. & Webb, J. K. High mortality and small population size prevents population recovery of a reintroduced mesopredator. Anim. Conserv. 20, 555–563. https://doi.org/10.1111/acv.12358 (2017).

    Article 

    Google Scholar 

  • 116.

    Bannister, H. L., Lynch, C. E. & Moseby, K. E. Predator swamping and supplementary feeding do not improve reintroduction success for a threatened Australian mammal, Bettongia lesueur. Aust. Mammal. 38, 177–187 (2016).

    Article 

    Google Scholar 

  • 117.

    Mori, E. et al. Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J. Zool. 310(3), 232–245. https://doi.org/10.1111/jzo.12743 (2020).

    Article 

    Google Scholar 

  • 118.

    Saggiomo, L. Mesopredator Release and Competitive Exclusion: A Global Review and Potential for European Carnivores [Masters] (Alma Mater Studiorum University, 2014).

    Google Scholar 

  • 119.

    Gigliotti, L. C. et al. Context dependency of top-down, bottom-up and density-dependent influences on cheetah demography. J. Anim. Ecol. 89, 449–459. https://doi.org/10.1111/1365-2656.13099 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 120.

    Cozzi, G. et al. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology 93(12), 2590–2599. https://doi.org/10.1890/12-0017.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 121.

    Rafiq, K. et al. Spatial and temporal overlaps between leopards (Panthera pardus) and their competitors in the African large predator guild. J. Zool. 311(4), 246–259. https://doi.org/10.1111/jzo.12781 (2020).

    Article 

    Google Scholar 

  • 122.

    Comley, J., Joubert, C. J., Mgqatsa, N. & Parker, D. M. Lions do not change rivers: Complex African savannas preclude top-down forcing by large predators. J. Nat. Conserv. 56, 125844 (2020).

    Article 

    Google Scholar 

  • 123.

    Allen, M. L., Peterson, B. & Krofel, M. No respect for apex carnivores: Distribution and activity patterns of honey badgers in the Serengeti. Mamm. Biol. 89, 90–94. https://doi.org/10.1016/j.mambio.2018.01.001 (2018).

    Article 

    Google Scholar 

  • 124.

    Vitekere, K. et al. Dynamic in species estimates of carnivores (leopard cat, red fox, and north Chinese leopard): A multi-year assessment of occupancy and coexistence in the Tieqiaoshan Nature Reserve, Shanxi Province, China. Animals 10(8), 1333. https://doi.org/10.3390/ani10081333 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 125.

    Brodie, J. F. & Giordano, A. Lack of trophic release with large mammal predators and prey in Borneo. Biol. Conserv. 63, 58–67. https://doi.org/10.1016/j.biocon.2013.01.003 (2013).

    Article 

    Google Scholar 

  • 126.

    Lahkar, D., Ahmed, M. F., Begum, R. H., Das, S. K. & Harihar, A. Inferring patterns of sympatry among large carnivores in Manas National Park—A prey-rich habitat influenced by anthropogenic disturbances. Anim. Conserv. (in press). https://doi.org/10.1111/acv.12662.

  • 127.

    Gehrt, S. D. & Prange, S. Interference competition between coyotes and raccoons: A test of the mesopredator release hypothesis. Behav. Ecol. 18(1), 204–214 (2007).

    Article 

    Google Scholar 

  • 128.

    Dias, D. M., Massara, R. L., de Campos, C. B. & Rodrigues, F. H. G. Feline predator–prey relationships in a semi-arid biome in Brazil. J. Zool. (in press). https://doi.org/10.1111/jzo.12647.

  • 129.

    Foster, V. C. et al. Jaguar and puma activity patterns and predator–prey interactions in four Brazilian biomes. Biotropica 45(3), 373–379. https://doi.org/10.1111/btp.12021 (2013).

    Article 

    Google Scholar 

  • 130.

    Allen, L. R. Best practice baiting: Dispersal and seasonal movement of wild dogs (Canis lupus familiaris). Technical highlights: Invasive plant and animal research 2008–09. Brisbane: QLD Department of Employment, Economic Development and Innovation; 2009. 61–62.

  • 131.

    Fleming, P., Corbett, L., Harden, R. & Thomson, P. Managing the impacts of dingoes and other wild dogs. Bomford M, editor. Canberra: Bureau of Rural Sciences; 2001.

  • 132.

    Thomas, L. et al. Distance software: Design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 133.

    Ruette, S., Stahl, P. & Albaret, M. Applying distance-sampling methods to spotlight counts of red foxes. J. Appl. Ecol. 40, 32–43 (2003).

    Article 

    Google Scholar 

  • 134.

    Engeman, R. Indexing principles and a widely applicable paradigm for indexing animal populations. Wildl. Res. 32(3), 202–210 (2005).

    Article 

    Google Scholar 

  • 135.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020.


  • Source: Ecology - nature.com

    Researchers design sensors to rapidly detect plant hormones

    Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome