in

The 20-million-year old lair of an ambush-predatory worm preserved in northeast Taiwan

[adace-ad id="91168"]
  • 1.

    Baird, W. Remarks on several Genera of Annelides, belonging to the Group Eunicea, with a notice of such Species as are contained in the Collection of the British Museum, and a description of some others hitherto undescribed. Zool. J. Linn. Soc. 10, 341–361 (1869).

    Article  Google Scholar 

  • 2.

    Winterbourn, M. A freshwater nereid polychaete from New Zealand. NZ J. Mar. Freshw. Res. 3, 281–285 (1969).

    Article  Google Scholar 

  • 3.

    Uchida, H., Tanase, H. & Kubota, S. An extraordinarily large specimen of the polychaete worm Eunice aphroditois (Pallas) (Order Eunicea) from Shirahama, Wakayama, central Japan. (2009).

  • 4.

    Salazar-Vallejo, S. I., Carrera-Parra, L. F. & de León-González, J. A. Giant Eunicid Polychaetes (Annelida) in shallow tropical and temperate seas. Rev. Biol. Trop. 59, 1463–1474 (2011).

    PubMed  Google Scholar 

  • 5.

    Fauchald, K. A review of the genus Eunice (Polychaeta: Eunicidae) based upon type material. Smithsonian Contributions to Zoology (1992).

  • 6.

    Fauchald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17, 193–284 (1979).

  • 7.

    Lachat, J. & Haag-Wackernagel, D. Novel mobbing strategies of a fish population against a sessile annelid predator. Sci. Rep. 6, 33187 (2016).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Day, J.H. A monograph on the Polychaeta of Southern Africa. British Museum of Natural History, Publication, 1–878 (1967).

  • 9.

    Eriksson, M. E., Parry, L. A. & Rudkin, D. M. Earth’s oldest ‘Bobbit worm’—Gigantism in a Devonian eunicidan polychaete. Sci. Rep. 7, 43061 (2017).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Kielan-Jaworowska, Z. New Ordovician genera of polychaete jaw apparatuses. Acta Palaeontol. Pol. 7(3–4), 291–332 (1962).

  • 11.

    Pemberton, S. G. & Frey, R. W. Trace fossil nomenclature and the PlanolitesPalaeophycus dilemma. J. Paleontol. 56(4), 843–881 (1982).

  • 12.

    Nara, M. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia 28, 171–178 (1995).

    Article  Google Scholar 

  • 13.

    Belaústegui, Z. & de Gibert, J. M. Bow-shaped, concentrically laminated polychaete burrows: A Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 381, 119–127 (2013).

    Article  Google Scholar 

  • 14.

    Rindsberg, A. K. & Kopaska-Merkel, D. C. Treptichnus and Arenicolites from the Steven C. Minkin paleozoic footprint site (Langsettian, Alabama, USA). Pennsylvanian Footprints in the Black Warrior Basin of Alabama. 1, 121–141 (2005).

  • 15.

    Gingras, M. K., Armitage, I. A., Pemberton, S. G. & Clifton, H. E. Pleistocene walrus herds in the Olympic Peninsula area: Trace-fossil evidence of predation by hydraulic jetting. Palaios 22, 539–545 (2007).

    ADS  Article  Google Scholar 

  • 16.

    Pearson, N. J., Gingras, M. K., Armitage, I. A. & Pemberton, S. G. Significance of Atlantic sturgeon feeding excavations, Mary’s Point, Bay of Fundy, New Brunswick, Canada. Palaios 22, 457–464 (2007).

    ADS  Article  Google Scholar 

  • 17.

    Gregory, M. R., Ballance, P. F., Gibson, G. W. & Ayling, A. M. On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. J. Sediment. Res. 49, 1125–1129 (1979).

    Google Scholar 

  • 18.

    Uchman, A. et al. Feeding traces of recent ray fish and occurrences of the trace fossil Piscichnus waitemata from the Pliocene of Santa Maria Island, Azores (Northeast Atlantic). Palaios 33, 361–375 (2018).

    ADS  Article  Google Scholar 

  • 19.

    Jensen, S. Predation by early Cambrian trilobites on infaunal worms-evidence from the Swedish Mickwitzia Sandstone. Lethaia 23, 29–42 (1990).

    Article  Google Scholar 

  • 20.

    Kong, D.-Y., Lee, M.-H. & Lee, S.-J. Traces (ichnospecies Oichnus paraboloides) of predatory gastropods on bivalve shells from the Seogwipo Formation, Jejudo, Korea. J. Asia-Pac. Biodivers. 8, 330–336 (2015).

    Article  Google Scholar 

  • 21.

    Suppe, J. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Geot. Soc. China Mem. 6, 21–33 (1984).

    Google Scholar 

  • 22.

    Teng, L. S. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57–76 (1990).

    ADS  Article  Google Scholar 

  • 23.

    Hong, E. & Wang, Y. Basin analysis of the Upper Miocene-Lower Pliocene series in northwestern foothills of Taiwan. Ti-Chih 8, 1–20 (1988).

    Google Scholar 

  • 24.

    Ho, C., Hsu, M. Y., Jen, L. S. & Fong, G. Geology and coal resources of the northern coastal area of Taiwan. Bull. Geol. Surv. Taiwan 15, 1–23 (1964).

    Google Scholar 

  • 25.

    Teng, L. S., Hsiehz, Y. W., Tanghz, C. H., Huanghz, C. Y. & Huang, T. C. Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proce. Geol. Soc. China 34, 313–336 (1991).

    Google Scholar 

  • 26.

    Huang, C.S. Geological map of Taiwan scale 1:50,000-Taipei. Geological map of Taiwan scale 1:50,000 (2005).

  • 27.

    Huang, C.S. & Liu, H.C. Geological map of Taiwan scale 1:50,000-Shuanghsi. Geological map of Taiwan scale 1:50,000 (1988).

  • 28.

    Hong, E. The sedimentary environments of the Miocene-lower Pliocene series in northwestern foothills of Taiwan based on lithofacies and ichnofacies analyses. PhD thesis, 1–114 (National Taiwan University Department of Geology, 1988)

  • 29.

    Yu, N. & Teng, L. Depositional environments of the Taliao and Shihti Formations, northern Taiwan. Bull. Central Geol. Surv. Taiwan 12, 99–132 (1999).

    Google Scholar 

  • 30.

    Miguez-Salas, O., Löwemark, L., Pan, Y. Y. & Rodríguez-Tovar, F. J. Selective colonization after storm events in a delta environment: applied ichnology from the early Miocene of Taiwan. Ichnos (in Press).

  • 31.

    MacEachern, J. et al. The role of ichnology in refining shallow marine facies models. In Recent advances in models of siliciclastic shallow-marine stratigraphy, Vol. 90, 73–116 (Society for Sedimentary Geology (SEPM), Tulsa, 2008).

  • 32.

    Pemberton, S.G. et al. Shorefaces. In Developments in sedimentology, Vol. 64, 563–603 (Elsevier, Amsterdam, 2012).

  • 33.

    Frey, R. W. & Pemberton, S. G. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bull. Can. Petrol. Geol. 33, 72–115 (1985).

    Google Scholar 

  • 34.

    Lalonde, S., Dafoe, L., Pemberton, S., Gingras, M. & Konhauser, K. Investigating the geochemical impact of burrowing animals: Proton and cadmium adsorption onto the mucus lining of Terebellid polychaete worms. Chem. Geol. 271, 44–51 (2010).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Zorn, M., Gingras, M. & Pemberton, S. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: Behavioral and diagenetic implications. Palaios 25, 59–72 (2010).

    ADS  Article  Google Scholar 

  • 36.

    Jørgensen, B.B. & Nelson, D.C. Sulfi de oxidation in marine sediments: Geochemistry meets microbiology. In Sulfur biogeochemistry: past and present, Vol. 379, 63–81 (Geological Society of America, 2004).

  • 37.

    Schoonen, M.A. Mechanisms of sedimentary pyrite formation. Special papers-Geological Society of America 117–134 (2004).

  • 38.

    Frey, R. W., Howard, J. D. & Pryor, W. A. Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 23, 199–229 (1978).

    Article  Google Scholar 

  • 39.

    Hester, N. & Pryor, W. Blade-shaped crustacean burrows of Eocene age: A composite form of Ophiomorpha. Geol. Soc. Am. Bull. 83, 677–688 (1972).

    ADS  Article  Google Scholar 

  • 40.

    Löwemark, L., Zheng, Y.-C., Das, S., Yeh, C.-P. & Chen, T.-T. A peculiar reworking of Ophiomorpha shafts in the Miocene Nangang Formation, Taiwan. Geodin. Acta 28, 71–85 (2016).

    Article  Google Scholar 

  • 41.

    Shimoda, K. & Tamaki, A. Burrow morphology of the ghost shrimp Nihonotrypaea petalura (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan. Mar. Biol. 144, 723–734 (2004).

    Article  Google Scholar 

  • 42.

    Bird, F. & Poore, G. Functional burrow morphology of Biffarius arenosus (Decapoda: Callianassidae) from southern Australia. Mar. Biol. 134, 77–87 (1999).

    Article  Google Scholar 

  • 43.

    Bromley, R. G. Trace Fossils: Biology, Taxonomy and Applications (Chapman & Hall, London, 1996).

    Google Scholar 

  • 44.

    Winter, A.G., Deits, R.L. & Dorsch, D.S. Critical timescales for burrowing in undersea substrates via localized fluidization, demonstrated by RoboClam: a robot inspired by Atlantic razor clams. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference DETC2013-12798, V06AT07A007 (American Society of Mechanical Engineers Digital Collection, 2013).

  • 45.

    Winter, A., Deits, R., Dorsch, D., Slocum, A. & Hosoi, A. Razor clam to RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation. Bioinspiration Biomimetics 9, 036009 (2014).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Holland, A. & Dean, J. The biology of the stout razor clam Tagelus plebeius: I. Animal-sediment relationships, feeding mechanism, and community biology. Chesapeake Sci. 18, 58–66 (1977).

    Article  Google Scholar 

  • 47.

    Dashtgard, S.E. & Gingras, M.K. Marine invertebrate neoichnology. In Developments in Sedimentology, Vol. 64, 273–295 (Elsevier, Amsterdam, 2012).

  • 48.

    Winter, A. G., Deits, R. L. & Hosoi, A. E. Localized fluidization burrowing mechanics of Ensis directus. J. Exp. Biol. 215, 2072–2080 (2012).

    Article  Google Scholar 

  • 49.

    Gingras, M. K., Dashtgard, S. E., MacEachern, J. A. & Pemberton, S. G. Biology of shallow marine ichnology: A modern perspective. Aquat. Biol. 2, 255–268 (2008).

    Article  Google Scholar 

  • 50.

    Law, C. J., Dorgan, K. M. & Rouse, G. W. Relating divergence in polychaete musculature to different burrowing behaviors: A study using Opheliidae (Annelida). J. Morphol. 275, 548–571 (2014).

    PubMed  Google Scholar 

  • 51.

    Kier, W. M. The diversity of hydrostatic skeletons. J. Exp. Biol. 215, 1247–1257 (2012).

    Article  Google Scholar 

  • 52.

    Clark, R. Locomotion and the phylogeny of the Metazoa. Italian J. Zool. 48, 11–28 (1981).

    Google Scholar 

  • 53.

    Verdonschot, P.F.M. Introduction to Annelida and the Class Polychaeta. In Thorp and Covich’s Freshwater Invertebrates 509–528 (2015).

  • 54.

    Paxton, H. Phylogeny of Eunicida (Annelida) based on morphology of jaws. Zoosymposia 2, 241–264 (2009).

    Article  Google Scholar 

  • 55.

    Hints, O. & Eriksson, M. E. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 95–114 (2007).

    Article  Google Scholar 

  • 56.

    Taylor, A. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148 (1993).

    ADS  Article  Google Scholar 

  • 57.

    Nomenclature, I.C.o.Z. Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bull. Zool. Nomencl. 69, 161–169 (2012).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road