in

The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species

[adace-ad id="91168"]
  • 1.

    Carlton, J. T. & Geller, J. B. Ecological roulette: The global transport of non-indigenous marine organisms. Sciences 261, 78–82 (1993).

    Article 

    Google Scholar 

  • 2.

    Ruiz, G. M., Fofonov, P. & Hines, A. H. Non-indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions. Limnol. Oceanogr. 44, 950–972 (1999).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article 

    Google Scholar 

  • 4.

    Tsiamis, K. et al. Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union’s Marine Strategy Framework Directive. Mar. Pollut. Bull. 145, 429–435 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Gollasch, S. Overview on introduced aquatic species in European navigational and adjacent waters. Helgol. Mar. Res. 60(2), 84–89 (2006).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Zenetos, A. et al. Alien species in the Mediterranean Sea by 2010 A contribution to the application of European Union’ Marine Strategy Framework Directive (MSFD) Part I. Spatial distribution. Mediterr. Mar. Sci. 11, 381–493 (2010).

    Article 

    Google Scholar 

  • 7.

    Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Est. Coast. Shelf. Sci. 191, 171–187 (2017).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Uttieri, M. et al. Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS. Biol. Invasions 22(3), 885–906. https://doi.org/10.1007/s10530-019-02174-8 (2020).

    Article 

    Google Scholar 

  • 9.

    Vidjak, O. et al. Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Mar. Pollut. Bull. 147, 133–149. https://doi.org/10.1016/j.marpolbul.2018.06.055 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Malej, A. et al. Mnemiopsis leidyi in the northern Adriatic: Here to stay?. J. Sea Res. 124, 10–16. https://doi.org/10.1016/j.seares.2017.04.010 (2017).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Marchini, A., Ferrario, J., Sfriso, A. & Occhipinti-Ambrogi, A. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. Biol. Invasions 17, 2943–2962. https://doi.org/10.1007/s10530-015-0922-3 (2015).

    Article 

    Google Scholar 

  • 12.

    Galliene, C. P. & Robins, D. B. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23(12), 1421–1432 (2001).

    Article 

    Google Scholar 

  • 13.

    Saiz, E., Calbet, A. & Broglio, E. Effects of small-scale turbolence on copepods: The case of Oithona davisae. Limnol. Oceanogr. 48, 1304–1311. https://doi.org/10.4319/lo.2003.48.3.1304 (2003).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Turner, T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43(2), 255–266 (2004).

    Google Scholar 

  • 15.

    Hwang, I. S., Kumar, R., Dahms, H. U., Tseng, L. C. & Chen, Q. C. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana 80(7), 827–837 (2007).

    Article 

    Google Scholar 

  • 16.

    Nishida, S., Tanaka, O. & Omori, M. Cyclopoid copepods of the family Oithonidae in Suruga bay and adjacent waters. Bull. Plankton Soc. Japan 24, 120–157 (1977).

    Google Scholar 

  • 17.

    Uye, S. I. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: Rapid invasion in Lakes Faro and Ganzirri (Central Mediterranean Sea). In Trends in Copepod Studies-Distribution, Biology and Ecology (ed. Uttieri, M.) 59–82 (Nova Science Publisher, New York, 2018).

    Google Scholar 

  • 19.

    Cornils, A. & Wend-Heckmann, B. First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): Evidence for recent invasion?. Helgol. Mar. Res. 69, 243–248. https://doi.org/10.1007/s10152-015-0426-7 (2015).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Uye, S. I. & Sano, K. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Progr. Ser. 163, 37–44 (1998).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Ferrari, F. D. & Orsi, J. Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda, Oithonidae) from the Sacramento San-Joaquin Estuary, California. J. Crustac. Biol. 4, 106–126. https://doi.org/10.2307/1547900 (1984).

    Article 

    Google Scholar 

  • 22.

    Cordell, J. R. et al. Factors influencing densities of non-indigenous species in the ballast water of ships arriving at ports in Puget Sound, Washington, United States. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 322–343. https://doi.org/10.1002/aqc.986 (2009).

    Article 

    Google Scholar 

  • 23.

    Dexter, E., Bollens, S. M., Cordell, J. & Rollwagen-Bollenseric, G. Zooplankton invasion on a grand scale: Insights from a 20-yr time series across 38 Northeast Pacific estuaries. Ecosphere 11(5), e03040 (2020).

    Article 

    Google Scholar 

  • 24.

    Temnykh, A. & Nishida, S. New record of the planktonic copepod Oithona davisae Ferrari and Orsi in the Black Sea with notes on the identity of Oithona brevicornis. Aquat. Invasions 7, 425–431 (2012).

    Article 

    Google Scholar 

  • 25.

    Uriarte, I., Villate, F. & Iriarte, A. Zooplankton recolonization of the inner estuary of Bilbao: Influence of pollution abatement, climate and non-indigenous species. J. Plankton Res. 38, 718–731. https://doi.org/10.1093/plankt/fbv060 (2015).

    Article 

    Google Scholar 

  • 26.

    Isinibilir, M., Svetlichny, L. & Hubareva, E. Competitive advantage of the invasive copepod Oithona davisae over the indigenous copepod Oithona nana in the Marmara Sea and Golden Horn Estuary. Mar. Freshw. Behav. Physiol. 49(6), 391–405. https://doi.org/10.1080/10236244.2016.1236528 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Terbıyık Kurt, T. & Beşiktepe, Ş. First distribution record of the invasive copepod Oithona davisae Ferrari and Orsi, 1984, in the coastal waters of the Aegean Sea. Mar. Ecol. 40(3), e12548. https://doi.org/10.1111/maec.12548 (2019).

    Article 

    Google Scholar 

  • 28.

    Cucco, A. & Umgiesser, G. Modeling the Venice Lagoon residence time. Ecol. Model. 193, 34–51 (2006).

    Article 

    Google Scholar 

  • 29.

    Gačić, M. et al. Temporal variations of water flow between the Venetian lagoon and the open sea. J. Mar. Syst. 51, 33–47. https://doi.org/10.1016/j.jmarsys.2004.05.025 (2004).

    Article 

    Google Scholar 

  • 30.

    Zuliani, A., Zaggia, L., Collavini, F. & Zonta, R. Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environ. Int. 31, 929–938 (2005).

    Article 

    Google Scholar 

  • 31.

    Sigovini, M. Multiscale dynamics of zoobenthic communities and relationships with environmental factors in the Lagoon of Venice. 207 pp (2011).

  • 32.

    Zirino, A. et al. Salinity and its variability in the Lagoon of Venice, 2000–2009. Adv. Oceanogr. Limnol. 5, 41–59. https://doi.org/10.1080/19475721.2014.900113 (2014).

    Article 

    Google Scholar 

  • 33.

    Amos, C. L., Umgiesser, G., Ghezzo, M., Kassem, H. & Ferrarin, C. Sea Surface Temperature Trends in Venice Lagoon and the Adjacent Waters. J. Coast. Res. 33(2), 385–395. https://doi.org/10.2112/JCOASTRES-D-16-00017.1 (2016).

    Article 

    Google Scholar 

  • 34.

    Ravera, O. The Lagoon of Venice: The result of both natural factors and human influence. J. Limnol. 59, 19–30 (2000).

    Article 

    Google Scholar 

  • 35.

    Solidoro, C. et al. Response of the Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal lagoons: Critical habitats of environmental change (eds Kennish, M. J. & Paerl, H. W.) 483–511 (CRC Press, New York, 2010).

    Google Scholar 

  • 36.

    Camatti, E., Pansera, M. & Bergamasco, A. The copepod Acartia tonsa Dana in a microtidal Mediterranean lagoon: History of a successful invasion. Water 11(6), 1200. https://doi.org/10.3390/w11061200 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Schroeder, A. et al. DNA metabarcoding and morphological analysis-Assessment of zooplankton biodiversity in transitional waters. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2020.104946 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Camatti, E. et al. Analisi dei popolamenti zooplanctonici nella laguna di Venezia dal 1975 al 2004. Biol. Mar. Mediterr. 13, 46–53 (2006).

    Google Scholar 

  • 39.

    Riccardi, N. Selectivity of plankton nets over mesozooplankton taxa: Implications for abundance, biomass and diversity estimation. J. Limnol. 69(2), 287–296. https://doi.org/10.3274/JL10-69-2-10 (2010).

    Article 

    Google Scholar 

  • 40.

    Pansera, M. et al. How does mesh-size selection reshape the description of zooplankton community structure in coastal lakes?. Est. Coast. Shelf. Sci. 151, 221–235 (2014).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton methodology manual (Elsevier, New York, 2000).

    Google Scholar 

  • 42.

    Clarke, K.R. & Gorley, R.N. PRIMERv6: User Manual/Tutorial. PRIMER-E, Plymouth, 192 pp (2006).

  • 43.

    Legendre, L. & Legendre, P. Ecologie numerique, Tome 2: La structure de données écologiques. Québec, Canada Masson, Paris, France and Presses de l’Univ. du (1984).

  • 44.

    Tokeshi, M. Niche apportionment or random assortment e species abundance patterns revisited. J. Anim. Ecol. 59, 1129–1146 (1990).

    Article 

    Google Scholar 

  • 45.

    Tokeshi, M. Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993).

    Article 

    Google Scholar 

  • 46.

    Fesl, C. Niche-oriented species-abundance models: Different approaches of their application to larval chironomid (Diptera) assemblages in a large river. J. Anim. Ecol. 71, 1085–1094 (2002).

    Article 

    Google Scholar 

  • 47.

    Spatharis, S., Orfanidis, S., Panayotidis, P. & Tsirtsis, G. Assembly processes in upper subtidal macroalgae: The effect of wave exposure. Est. Coast. Shelf. Sci. 91(2), 298–305. https://doi.org/10.1016/j.ecss.2010.10.032 (2011).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Ferreira, F. C. & Petrere, J. M. Comments about some species abundance patterns: Classic, neutral, and niche partitioning models. Braz. J. Biol. 68(4), 1003–1012. https://doi.org/10.1590/S1519-69842008000500008 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Spatharis, S., Mouillot, D., Do Chi, T., Danielidis, D. B. & Tsirtsis, G. A niche-based modeling approach to phytoplankton community assembly rules. Oecol. 159(1), 171–180. https://doi.org/10.1007/s00442-008-1178-8 (2009).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Johansson, F., Englund, G., Brodin, T. & Gardfjell, H. Species abundance models and patterns in dragonfly communities: Effects of fish predators. Oikos 114(1), 27–36 (2006).

    Article 

    Google Scholar 

  • 51.

    Anderson, B. J. & Mouillot, D. Influence of scale and resolution on niche apportionment rules in saltmeadow vegetation. Aquat. Biol. 1(2), 195–204. https://doi.org/10.3354/ab00017 (2007).

    Article 

    Google Scholar 

  • 52.

    Tokeshi, M. Power fraction: A new explanation of relative abundance patterns in species-rich assemblages. Oikos 75, 543–550 (1996).

    Article 

    Google Scholar 

  • 53.

    Seebens, H., Gastner, M. T., Blasius, B. & Courchamp, F. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16(6), 782–790. https://doi.org/10.1111/ele.12111 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Casal, C. M. V. Global documentation of fish introductions: The growing crisis and recommendations for actions. Biol. Invasions 8, 3–11 (2006).

    Article 

    Google Scholar 

  • 55.

    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf. Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Schroeder, K. et al. Rapid response to climate change in a marginal sea. Sci. Rep. 7(1), 1–7. https://doi.org/10.1038/s41598-017-04455-5 (2017).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Elliott, M. Biological pollutants and biological pollution — an increasing cause for concern. Mar. Pollut. Bull. 46, 275–280 (2003).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Elton, C. S. The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).

    Google Scholar 

  • 59.

    Gubanova, A., Garbazey, O. A., Popova, E. V., Altukhov, D. A. & Mukhanov, V. S. Oithona davisae: Naturalization in the Black Sea, interannual and seasonal dynamics, and effect on the structure of the planktonic copepod community. Oceanol. 59(6), 912–919. https://doi.org/10.31857/S0030-15745961008-1015 (2019).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Altukhov, D. A., Gubanova, A. D. & Mukhanov, V. S. New invasive copepod Oithona davisae, Ferrari and Orsi, 1984: Seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Mar. Ecol. 35, 28–34 (2014).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Svetlichny, L. et al. Adaptive strategy of thermophilic Oithona davisae in the cold Black Sea environment. Turk. J. Fish. Aquat. Sci. 16(1), 077–090. https://doi.org/10.4194/1303-2712-v16_1_09 (2016).

    Article 

    Google Scholar 

  • 62.

    Hubareva, E. & Svetlichny, L. Salinity and temperature tolerance of alien copepods Acartia tonsa and Oithona davisae in the Black Sea. Rapp. Comm. Int. Mer. Mediterr. 40, 742. https://doi.org/10.13140/2.1.1145.3445 (2013).

    Article 

    Google Scholar 

  • 63.

    Svetlichny, L., Hubareva, E. & İşi̇ni̇bi̇li̇r, M. ,. Population dynamics of the copepod invader Oithona davisae in the Black Sea. Turk. J. Zool. 42(6), 684–693. https://doi.org/10.3906/zoo-1804-48 (2018).

    Article 

    Google Scholar 

  • 64.

    Uye, S. I. Replacement of large copepods by small ones with eutrophication of embayments: Cause and consequence. Hydrobiol. 292(293), 513–519. https://doi.org/10.1007/BF00229979 (1994).

    Article 

    Google Scholar 

  • 65.

    Saiz, E., Griffell, K., Calbet, A. & Isari, S. Feeding rates and prey: Predator size ratios of the nauplii and adult females of the marine cyclopoid copepod Oithona davisae. Limnol. Oceanography 59(6), 2077–2088 (2014).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Cheng, W., Akiba, T., Omura, T. & Tanaka, Y. On the foraging and feeding ability of Oithona davisae (Crustacea, Copepoda). Hydrobiol. 741(1), 167–176. https://doi.org/10.1007/s10750-014-1867-8 (2014).

    Article 

    Google Scholar 

  • 67.

    Khanaychenko, A., Mukhanov, V., Aganesova, L., Besiktepe, S. & Gavrilova, N. Grazing and feeding selectivity of Oithona davisae in the Black Sea: Importance of cryptophytes. Turk. J. Fish. Aquat. Sci. 18(8), 937–949. https://doi.org/10.4194/1303-2712-v18_8_02 (2018).

    Article 

    Google Scholar 

  • 68.

    Uchima, M. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48(1), 93–97 (1988).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Uchima, M. & Hirano, R. Swimming behavior of the marine copepod Oithona davisae: Internal control and search for environment. Mar. Biol. 99(1), 47–56 (1988).

    Article 

    Google Scholar 

  • 70.

    Bernardi Aubry, F., Acri, F., Bianchi, F. & Pugnetti, A. Looking for patterns in the phytoplankton community of the Mediterranean microtidal Venice Lagoon: Evidence from ten years of observations. Sci. Mar. 77(1), 47–60. https://doi.org/10.3989/scimar.03638.21A (2013).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Facca, C. et al. Description of a Multimetric Phytoplankton Index (MPI) for the assessment of transitional waters. Mar. Pollut. Bull. 79(1–2), 145–154. https://doi.org/10.1016/j.marpolbul.2013.12.025 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Acri, F., Braga, F. & Bernardi Aubry, F. Long-term dynamics in nutrients, chlorophyll a and water quality parameters in the Lagoon of Venice. Sci. Mar. https://doi.org/10.3989/scimar.05022.30A (2020).

    Article 

    Google Scholar 

  • 73.

    Bandelj, V. et al. Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40. https://doi.org/10.3354/meps07565 (2008).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Gubanova, A. et al. Species composition of Black Sea marine planktonic copepods. J. Mar. Syst. 135, 44–52. https://doi.org/10.1016/j.jmarsys.2013.12.004 (2014).

    Article 

    Google Scholar 

  • 75.

    Sacca, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiology 600(1), 89–104 (2008).

    Article 

    Google Scholar 

  • 76.

    Tagliapietra, D., Zanon, V., Frangipane, G., Umgiesser, G. & Sigovini, M. Physiographic zoning of the Venetian Lagoon. In Scientific Research and Safeguarding of Venice (ed. Campostrini, P.) 161–164 (2010).


  • Source: Ecology - nature.com

    Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

    Olfactory signals and fertility in olive baboons