in

The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network

[adace-ad id="91168"]
  • 1.

    Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–454 (1998).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    von Fischer, J. C., Tieszen, L. L. & Schimel, D. S. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob. Chang. Biol. 14, 1141–1155 (2008).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Sage, R. F., Wedin, D. A. & Li, M. The biogeography of C4 photosynthesis: patterns and controlling factors. in C4 plant biology (eds Rowan F. Sage & Russel K. Monson) 313–373 (Academic Press, 1999).

  • 4.

    Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp. Bot. 68, 11–28 (2016).

    Google Scholar 

  • 6.

    Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant. Biol. 63, 19–47 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Sayed, O. H. Crassulacean Acid Metabolism 1975–2000, a Check List. Photosynthetica 39, 339–352 (2001).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Andrews, J. T. & Lorimer, G. H. Rubisco: structure, mechanisms, and prospects for improvement. in The Biochemistry of Plants: A Comprehensive Treatise Vol. 10 (eds MD Haleh & NK Boardman) 132–207 (Academic Press, 1987).

  • 9.

    Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant. Physiol. 35, 415–442 (1984).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant. Biol. 67, 107–129 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70, 6495–6508 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 106, 1483–1494 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Wittmer, M. H. O. M., Auerswald, K., Bai, Y., Schaufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Chang. Biol. 16, 605–616 (2010).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Winslow, J. C., Hunt, E. R. Jr & Piper, S. C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model. 163, 153–173 (2003).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Haveles, A. W., Fox, D. L. & Fox-Dobbs, K. Carbon isoscapes of rodent diets in the Great Plains USA deviate from regional gradients in C4 grass abundance due to a preference for C3 plant resources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 53–66 (2019).

    Article 

    Google Scholar 

  • 18.

    Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers. Ecology 91, 1628–1638 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Griffith, D. M. et al. Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob. Ecol. Biogeogr. 24, 304–313 (2015).

    Article 

    Google Scholar 

  • 21.

    Still, C. J., Cotton, J. M. & Griffith, D. M. Assessing earth system model predictions of C4 grass cover in North America: From the glacial era to the end of this century. Glob. Ecol. Biogeogr. 28, 145–157 (2019).

    Article 

    Google Scholar 

  • 22.

    Griffith, D. M., Cotton, J. M., Powell, R. L., Sheldon, N. D. & Still, C. J. Multi-century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution. J Biogeogr. 44, 2564–2574 (2017).

    Article 

    Google Scholar 

  • 23.

    Hattersley, P. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57, 113–128 (1983).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Sage, R. F., Sage, T. L., Pearcy, R. W. & Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94, 1992–2003 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Murphy, B. P. & Bowman, D. M. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Glob. Ecol. Biogeogr. 16, 160–169 (2007).

    Article 

    Google Scholar 

  • 27.

    White, A. et al. AUSPLOTS rangelands survey protocols manual. (The University of Adelaide Press, 2012).

  • 28.

    Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8 (2020).

  • 29.

    Orians, G. H. & Milewski, A. V. Ecology of Australia: the effects of nutrient‐poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Sparrow, B. et al. Our capacity to tell an Australian ecological story. in Biodiversity and Environmental Change: Monitoring, Challenges and Direction 51–84 (CSIRO Publishing Collingwood, Victoria, 2014).

  • 31.

    Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. (Australian Nature Conservation Agency, Canberra, 1995).

  • 32.

    Tokmakoff, A., Sparrow, B., Turner, D. & Lowe, A. AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Gener. Comp. Sy. 56, 537–549 (2016).

    Article 

    Google Scholar 

  • 33.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 34.

    Guerin, G. et al. ausplotsR: TERN AusPlots analysis package. https://cran.r-project.org/web/packages/ausplotsR/index.html (2020).

  • 35.

    Munroe, S. et al. ausplotsR: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia’s Terrestrial Ecosystem Research Network. Preprint at https://ecoevorxiv.org/25phx/ (2020).

  • 36.

    Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Watson, L., & Dallwitz, M. J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www1.biologie.uni-hamburg.de/b-online/delta/angio/index.htm (1992).

  • 38.

    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).

    Article 

    Google Scholar 

  • 40.

    Winter, K., Holtum, J. A. M. & Smith, J. A. C. Crassulacean acid metabolism: a continuous or discrete trait? New Phytol. 208, 73–78 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Winter, K. & Holtum, J. A. How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol. 129, 1843–1851 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Winter, K. & Holtum, J. A. M. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp. Bot. 65, 3425–3441 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Bloom, A. J. & Troughton, J. H. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38, 35–43 (1979).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in Australian Calandrinia reveals lability in C3+ CAM phenotypes and a possible constraint to the evolution of strong CAM. Integr. Comp. Biol. 59, 517–534 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 46.

    Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp. Bot. 59, 1735–1742 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Munroe, S. et al. The Photosynthetic Pathways of Plant Species surveyed in TERN Ecosystem Surveillance Plots. Terrestrial Ecosystem Research Network (TERN) https://doi.org/10.25901/k61f-yz90 (2020).

  • 48.

    Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J Plant Sci. 164, S55–S77 (2003).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Wang, R. & Ma, L. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Sci. Rep. 6, 27977 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Stowe, L. G. & Teeri, J. A. The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am. Nat. 112, 609–623 (1978).

    Article 

    Google Scholar 

  • 52.

    Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. 123, 15-31 (2000).

  • 53.

    Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. & Franceschi, V. Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora. Funct. Plant Biol. 29, 763–773 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp. Bot. 70, 6571–6579 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Ke, L., Lin, Z. & Guoxing, Z. Study of normalization method of isotopic compositions to isotope reference scales. J Chem. Pharmaceut. Res 6, 1 (2014).

    Google Scholar 

  • 58.

    Harwood, T. et al. 9s climatology for continental Australia 1976–2005: Summary variables with elevation and radiative adjustment, version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/5afa9f7d1a552 (2016).

  • 59.

    Viscarra Rossel, R. et al. Soil and Landscape Grid National Soil Attribute Maps – pH – CaCl2 (3” resolution), version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/546F17EC6AB6E (2014).

  • 60.

    Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Bohley, K. et al. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect. Plant Ecol. Evol. Syst. 17, 116–130 (2015).

    Article 

    Google Scholar 

  • 62.

    Bruhl, J. J. & Wilson, K. L. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23, 99–148 (2007).

    Article 

    Google Scholar 

  • 63.

    Caddy-Retalic, S. Quantifying responses of ecological communities to bioclimatic gradients PhD thesis, University of Adelaide, School of Biological Sciences (2017).

  • 64.

    Carolin, R., Jacobs, S. & Vesk, M. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust. J. Bot. 30, 387–392 (1982).

    Article 

    Google Scholar 

  • 65.

    Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. World Grass Species: Synonymy. http://www.kew.org/data/grasses-syn.html (2002).

  • 66.

    D’andrea, R. M., Andreo, C. S. & Lara, M. V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid‐like metabolism induction and reversal upon re‐watering. Physiol. Plant. 152, 414–430 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 67.

    Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24, 411–439 (1993).

    Article 

    Google Scholar 

  • 68.

    Feodorova, T. A., Voznesenskaya, E. V., Edwards, G. E. & Roalson, E. H. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35, 811–826 (2010).

    Article 

    Google Scholar 

  • 69.

    Guillaume, K., Huard, M., Gignoux, J., Mariotti, A. & Abbadie, L. Does the timing of litter inputs determine natural abundance of 13C in soil organic matter? Insights from an African tiger bush ecosystem. Oecologia 127, 295–304 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Herppich, W. B. & Herppich, M. Ecophysiological investigations on plants of the genus Plectranthus (Fam. Lamiaceae) native to Yemen and southern Africa. Flora 191, 401–408 (1996).

    Article 

    Google Scholar 

  • 71.

    Holtum, J. A. et al. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 31, 109–117 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Holtum, J. A., Hancock, L. P., Edwards, E. J. & Winter, K. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynth. Res. 134, 17–25 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Kadereit, G., Borsch, T., Weising, K. & Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986 (2003).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L under natural environmental conditions. Plant. Physiol. 69, 757–761 (1982).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Madhusudana Rao, I., Swamy, P. M. & Das, V. S. R. Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210 (1979).

    Article 

    Google Scholar 

  • 77.

    Metcalfe, C. R. Anatomy of the monocotyledons. 1. Gramineae. (Clarendon Press, 1960).

  • 78.

    Pate, J. S., Unkovich, M. J., Erskine, P. D. & Stewart, G. R. Australian mulga ecosystems –13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ. 21, 1231–1242 (1998).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Schmidt, S. & Stewart, G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Thiede, J. & Eggli, U. Crassulaceae. in Flowering Plants· Eudicots 83–118 (Springer, 2007).

  • 82.

    Ting, I. P. Photosynthesis of arid and subtropical succulent plants. Aliso 12, 387–406 (1989).

    Article 

    Google Scholar 

  • 83.

    Watson, L., & Dallwitz, M. J. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/intro.htm (1992).

  • 84.

    Winter, K., Garcia, M., Virgo, A. & Holtum, J. A. Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). J. Exp. Bot. 70, 6561–6570 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Calculation of external climate costs for food highlights inadequate pricing of animal products

    Encouraging solar energy adoption in rural India