in

Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability

[adace-ad id="91168"]
  • 1.

    Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the martian atmosphere: evidence for life?. Icarus 172, 537–547 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of mars. Science 306, 1758–1761 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Geminale, A., Formisano, V. & Giuranna, M. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Mumma, M. J. et al. Strong release of methane on mars in northern summer 2003. Science 323, 1041–1045 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Korablev, O. et al. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568, 517–520 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Fries, M. et al. A cometary origin for martian atmospheric methane. Geochem. Perspect. Lett. 2, 10–23 (2016).

    Article 

    Google Scholar 

  • 9.

    Keppler, F. et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 93–96 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Moores, J. E. & Schuerger, A. C. UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere. J. Geophys. Res. Planets 117, E8 (2012).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Schuerger, A. C., Moores, J. E., Clausen, C. A., Barlow, N. G. & Britt, D. T. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions. J. Geophys. Res. Planets 117, E8 (2012).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Etiope, G., Ehlmann, B. L. & Schoell, M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars. Icarus 224, 276–285 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Oehler, D. Z. & Etiope, G. Methane seepage on mars: where to look and why. Astrobiology 17, 1233–1264 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Onstott, T. C. et al. Martian CH 4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Elwood Madden, M. E., Ulrich, S. M., Onstott, T. C. & Phelps, T. J. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029156 (2007).

    Article 

    Google Scholar 

  • 16.

    Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Kendrick, M. G. & Kral, T. A. Survival of methanogens during desiccation: implications for life on mars. Astrobiology 6, 546–551 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Anderson, K. L., Apolinario, E. E. & Sowers, K. R. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl. Environ. Microbiol. 78, 1473–1479 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Kral, T. A. & Altheide, S. T. Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs. Planet. Space Sci. 89, 167–171 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Sowers, K. R. & Gunsalus, R. P. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170, 998–1002 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Maestrojuan, G. M. et al. Taxonomy and halotolerance of mesophilic methanosarcina strains, assignment of strains to species, and synonymy of methanosarcina mazei and methanosarcina frisia. Int. J. Syst. Bacteriol. 42, 561–567 (1992).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Sowers, K. R., Boone, J. E. & Gunsalus, R. P. Disaggregation of methanosarcina spp and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59, 3832–3839 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Sowers, K. R. & Gunsalus, R. P. Halotolerance in methanosarcina spp: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation. Appl. Environ. Microbiol. 61, 4382–4388 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Roessler, M. et al. Identification of a salt-induced primary transporter for glycine betaine in the methanogen methanosarcina mazei go1. Appl. Environ. Microbiol. 68, 2133–2139 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Shcherbakova, V., Oshurkova, V. & Yoshimura, Y. The effects of perchlorates on the permafrost methanogens: implication for autotrophic life on mars. Microorganisms 3, 518–534 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Kral, T. A. et al. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planet. Space Sci. 120, 87–95 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Rivkina, E. M., Laurinavichus, K. S., Gilichinsky, D. A. & Shcherbakova, V. A. Methane generation in permafrost sediments. Dokl. Biol. Sci. https://doi.org/10.1023/A:1015366613580 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Rivkina, E. et al. Microbial life in permafrost. Adv. Sp. Res. 33, 1215–1221 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Rivkina, E. et al. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 61, 1–15 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Takai, K. et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. U. S. A. 105, 10949–10954 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Sinha, N., Nepal, S., Kral, T. & Kumar, P. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: implications for deep subsurface life on Mars. Planet. Space Sci. 136, 15–24 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Chastain, B. K. & Kral, T. A. Approaching mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a Smectite clay. Astrobiology 10, 889–897 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Kral, T. A., Altheide, T. S., Lueders, A. E. & Schuerger, A. C. Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planet. Space Sci. 59, 264–270 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Mickol, R. L. & Kral, T. A. Low pressure tolerance by methanogens in an aqueous environment: implications for subsurface life on mars. Orig. Life Evol. Biosph. 47, 511–532 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Coates, J. D. & Achenbach, L. A. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569–580 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Ericksen, G. E. The Chilean Nitrate Deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am. Sci. 71, 366–374 (1983).

    ADS 

    Google Scholar 

  • 37.

    Kounaves, S. P. et al. Discovery of natural perchlorate in the antarctic dry valleys and its global implications. Environ. Sci. Technol. 44, 2360–2364 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Hecht, M. H. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 64–67 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, E12010 (2010).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Glavin, D. P. et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 1955–1973 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Kounaves, S. P. et al. Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226–231 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Kounaves, S. P., Carrier, B. L., O’Neil, G. D., Stroble, S. T. & Claire, M. W. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus 229, 206–213 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo2546 (2015).

    Article 

    Google Scholar 

  • 44.

    Clark, B. C. & Kounaves, S. P. Evidence for the distribution of perchlorates on Mars. Int. J. Astrobiol. 15, 311–318 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. Polythermal study of the systems M(ClO4)2–H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ. J. Appl. Chem. 78, 409–413 (2005).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Chevrier, V. F., Hanley, J. & Altheide, T. S. Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site Mars. Geophys. Res. Lett. 36, L10202 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 207, 675–685 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Stillman, D. E. & Grimm, R. E. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site Mars. J. Geophys. Res. 116, E09005 (2011).

    ADS 

    Google Scholar 

  • 49.

    Toner, J. D., Catling, D. C. & Light, B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 233, 36–47 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Nikolakakos, G. & Whiteway, J. A. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophys. Res. Lett. 42, 7899–7906 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Maeder, D. L. et al. The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes. J. Bacteriol. 188, 7922–7931 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Sorek, R. & Cossart, P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11, 9–16 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Lobo, A. L. & Zinder, S. H. Diazotrophy and Nitrogenase Activity in the Archaebacterium Methanosarcina barkeri 227. Appl. Environ. Microbiol. 54, 1656–1661 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Lobo, A. L. & Zinder, S. H. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J. Bacteriol. 172, 6789–6796 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Kessler, P. S. & Leigh, J. A. Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152, 1343–1351 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Kessler, P. S., Daniel, C. & Leigh, J. A. Ammonia Switch-Off of Nitrogen Fixation in the Methanogenic Archaeon Methanococcus maripaludis: Mechanistic Features and Requirement for the Novel GlnB Homologues, NifI1 and NifI2. J. Bacteriol. 183, 882–889 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Kempf, B. & Bremer, E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in bacillus subtilis. J. Biol. Chem. 270, 16701–16713 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Kempf, B. & Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Hoffmann, T. & Bremer, E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. 76, 494–498 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Kreisl, P. & Kandler, O. Chemical structure of the cell wall polymer of methanosarcina. Syst. Appl. Microbiol. 7, 293–299 (1986).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Jarrell, K. F., Jones, G. M., Kandiba, L., Nair, D. B. & Eichler, J. S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea 2010, 1–13 (2010).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Srinivasan, G. Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Bin, P., Huang, R. & Zhou, X. Oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed Res. Int. 2017, 1–6 (2017).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Armesto, X. L., Canle, L. M., Fernández, M. I., Garcı́a, M. V. & Santaballa, J. A. First steps in the oxidation of sulfur-containing amino acids by hypohalogenation: very fast generation of intermediate sulfenyl halides and halosulfonium cations. Tetrahedron 56, 1103–1109 (2000).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Casanueva, A., Tuffin, M., Cary, C. & Cowan, D. A. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol. 18, 374–381 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Oren, A. Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 58, 291–298 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Seibel, B. A. & Walsh, P. J. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 205, 297–306 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Lobo, A. L. & Zinder, S. H. Nitrogen fixation by methanogenic bacteria. in Biological Nitrogen Fixation (eds. Stacey, G., Burris, R. H. & Evans, H. J.) 191–211 (Chapman and Hall, 1992).

  • 70.

    Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Bardiya, N. & Bae, J.-H. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166, 237–254 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Barnum, T. P. et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 12, 1568–1581 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Oren, A., Elevi, B. R. & Mana, L. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18, 75–80 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Liebensteiner, M. G., Pinkse, M. W. H., Schaap, P. J., Stams, A. J. M. & Lomans, B. P. Archaeal (Per)Chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340, 85–87 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Bender, K. S. et al. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187, 5090–5096 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Youngblut, M. D. et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J. Biol. Chem. 291, 9190–9202 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. https://doi.org/10.1016/S0269-7491(01)00288-3 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 78.

    He, L. et al. Biological perchlorate reduction: which electron donor we can choose?. Environ. Sci. Pollut. Res. 26, 16906–16922 (2019).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Xie, T. et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2018.06.011 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 80.

    Chaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.68.9.4425-4430.2002 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Abu-Omar, M. M. Effective and catalytic reduction of perchlorate by atom transfer-reaction kinetics and mechanisms. Comments Inorg. Chem. 24, 15–37 (2003).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Adkins, H. & Cramer, H. I. The use of nickel as a catalyst for hydrogenation. J. Am. Chem. Soc. 52, 4349–4358 (1930).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Thauer, R. K. et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Zhang, H., Bruns, M. A. & Logan, B. E. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environ. Microbiol. https://doi.org/10.1046/j.1462-2920.2002.00338.x (2002).

    Article 
    PubMed 

    Google Scholar 

  • 85.

    Ide, T., Bäumer, S. & Deppenmeier, U. Energy conservation by the H2: heterodisulfide oxidoreductase from methanosarcina mazei Gö1: identification of two proton-translocating segments. J. Bacteriol. 181, 4076–4080 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Deppenmeier, U. The membrane-bound electron transport system of methanosarcina species. J. Bioenerg. Biomembr. 36, 55–64 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. & Metcalf, W. W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. 99, 5632–5637 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Kulkarni, G., Mand, T. D. & Metcalf, W. W. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. MBio 9, (2018).

  • 89.

    Bobik, T. Formyl-methanofuran synthesis in Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 87, 323–326 (1990).

    CAS 
    Article 

    Google Scholar 

  • 90.

    Wang, D. M., Shah, S. I., Chen, J. G. & Huang, C. P. Catalytic reduction of perchlorate by H2 gas in dilute aqueous solutions. Sep. Purif. Technol. 60, 14–21 (2008).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Mand, T. D. & Metcalf, W. W. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina. Microbiol. Mol. Biol. Rev. 83, (2019).

  • 93.

    Rummel, J. D. et al. A new analysis of mars “special regions”: findings of the second MEPAG special regions science analysis group (SR-SAG2). Astrobiology 14, 887–968 (2014).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Bryant, M. P. & Boone, D. R. Emended description of strain MST(DSM 800T), the type strain of methanosarcina barkeri. Int. J. Syst. Bacteriol. 37, 169–170 (1987).

    Article 

    Google Scholar 

  • 95.

    Widdel, F., Kohring, G.-W. & Mayer, F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch. Microbiol. 134, 286–294 (1983).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Francisco, D. E., Mah, R. A. & Rabin, A. C. Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 92, 416 (1973).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 98.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 100.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 102.

    Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 15, 10–1186 (2014).

    Article 
    CAS 

    Google Scholar 

  • 103.

    Ogata, H. et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific

    Integrating spatial analysis and questionnaire survey to better understand human-onager conflict in Southern Iran