in

Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau

[adace-ad id="91168"]
  • 1.

    Hemes, K. S. et al. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. For. Meteorol. 268, 202–214 (2019).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Sun, L. et al. Wetland-atmosphere methane exchange in Northeast China: A comparison of permafrost peatland and freshwater wetlands. Agric. For. Meteorol. 249, 239–249 (2018).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65(10), 934–941 (2014).

    Article 

    Google Scholar 

  • 4.

    Havril, T., Tóth, Á., Molson, J. W., Galsa, A. & Mádl-Szőnyi, J. Impacts of predicted climate change on groundwater flow systems: Can wetlands disappear due to recharge reduction?. J. Hydrol. 563, 1169–1180 (2018).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Ye, X. C., Meng, Y. K., Xu, L. G. & Xu, C. Y. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China’s largest freshwater lake. Sci. Total Environ. 659, 302–313 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Shen, G., Yang, X., Jin, Y., Xu, B. & Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Ind. 104, 48–58 (2019).

    Article 

    Google Scholar 

  • 7.

    Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).

    Article 

    Google Scholar 

  • 8.

    Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Fujisaki, K. et al. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Change Biol. 21(7), 2773–2786 (2015).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Gregorich, E. G., Beare, M. H., Mckim, U. F. & Skjemstad, J. O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil. Sci. Soc. Am. J. 70, 975–985 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126 (2016).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Yuan, G. et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil Tillage Res. 209, 104958 (2021).

    Article 

    Google Scholar 

  • 14.

    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).

    Article 

    Google Scholar 

  • 15.

    Wang, Y., Fu, B., Lü, Y. & Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. CATENA 85(1), 58–66 (2011).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Wang, G. X., Li, Y. S., Wang, Y. B. & Wu, Q. B. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143(1–2), 143–152 (2008).

    CAS 

    Google Scholar 

  • 17.

    Guo, J., Wang, B., Wang, G., Wu, Y. & Cao, F. Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China. CATENA 171, 450–459 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Cheng, X. et al. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145(3–4), 177–184 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Zhou, L. et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China. Clean-Soil Air Water 43(4), 569–576 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Yang, W., Zhao, H. & Cheng, X. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of eastern China. Ecol. Eng. 61(12), 50–57 (2013).

    Article 

    Google Scholar 

  • 21.

    Shao, X. X., Yang, W. Y. & Wu, M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay Tidal Flat Wetland. PLoS ONE 10(11), e0142677 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Zhu, J. et al. Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 187(6), 355 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Li, Z. et al. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China. Sci. Rep. 9(1), 1–14 (2019).

    ADS 

    Google Scholar 

  • 24.

    Wang, G., Wang, Y., Li, Y. & Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA 70(3), 506–514 (2007).

    Article 

    Google Scholar 

  • 25.

    Wu, P. et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 7(1), 837 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Li, B., Dong, S. C., Jiang, X. B. & Li, Z. H. Analysis on the driving factors of grassland desertification in Zoige wetland. J. Soil Water Conserv. 15, 112–115 (2008).

    Google Scholar 

  • 27.

    Peng, F., You, Q., Xue, X., Guo, J. & Wang, T. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the qinghai-tibet plateau, china. Solid Earth 6(1), 303–310 (2015).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Bai, J. et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Soil Res. 48(8), 730–736 (2010).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Jia, B., Niu, Z., Wu, Y., Kuzyakov, Y. & Li, X. G. Waterlogging increases organic carbon decomposition in grassland soils. Soil Biol. Biochem. 148, 107927 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Liu, W. et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 7(3), 035401 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Wu, X. et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet plateau, China. Permafrost Periglac. Process. 23(2), 162–169 (2012).

    Article 

    Google Scholar 

  • 32.

    Rui, Y. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. J. Soils Sediments 11(6), 903 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Alhassan, A. R. M., Ma, W. W., Li, G., Wu, J. Q. & Chen, G. P. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Ecol. Evol. 8(23), 11999–12010 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Wu, J. Q. et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecol. Eng. 145, 105666 (2020).

    Article 

    Google Scholar 

  • 37.

    Butenschoen, O., Scheu, S. & Eisenhauer, N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol. Biochem. 43(9), 1902–1907 (2011).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Fan, J., Cao, Y., Yan, Y., Lu, X. & Wang, X. Freezingthawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet. Afr. J. Microbiol. Res. 6(3), 562–567 (2012).

    CAS 

    Google Scholar 

  • 39.

    Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. CATENA 96, 83–89 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Wu, J. et al. Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau. CATENA 202, 105253 (2021).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total Environ. 625, 782–791 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Dekker, S. C. The influence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Beljkaš, B. et al. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accred. Qual. Assur. 15(10), 555–561 (2010).

    Article 
    CAS 

    Google Scholar 

  • 45.

    McKie, V. A. & MccleAry, B. V. A novel and rapid colorimetric method for measuring TP and phytic acid in foods and animal feeds. J. AOAC Int. 99(3), 738–743 (2016).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10, 12211–12223 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Li, S. et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 155, 289–297 (2016).

    Article 

    Google Scholar 

  • 48.

    Nie, X. J., Zhang, J. H., Cheng, J. X., Gao, H. & Guan, Z. M. Effect of soil redistribution on various organic carbons in a water-and tillage-eroded soil. Soil Tillage Res. 155, 1–8 (2016).

    Article 

    Google Scholar 

  • 49.

    Xu, C. Y. et al. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Sci. Rep. 11(1), 1–12 (2021).

    Article 
    CAS 

    Google Scholar 

  • 50.

    dos Reis Ferreira, C. et al. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 198, 104533 (2020).

    Article 

    Google Scholar 

  • 51.

    Luan, J. et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau. Ecol. Eng. 64, 262–268 (2014).

    Article 

    Google Scholar 

  • 52.

    Li, J. et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 175, 281–290 (2018).

    Article 

    Google Scholar 

  • 53.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Wang, J., Bai, J., Zhao, Q., Lu, Q. & Xia, Z. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Sci. Rep. 6(1), 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Huo, L. et al. Effect of wetland reclamation on soil organic carbon stability in peat mire soil around Xingkai Lake in Northeast China. Chin. Geogr. Sci. 28(2), 325–336 (2018).

    Article 

    Google Scholar 

  • 56.

    Norton, J. B., Olsen, H. R., Jungst, L. J., Legg, D. E. & Horwath, W. R. Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J. Soils Sediments 14(1), 34–43 (2014).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).

    CAS 

    Google Scholar 

  • 58.

    Enriquez, A. S., Chimner, R. A., Cremona, M. V., Diehl, P. & Bonvissuto, G. L. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetlands Ecol. Manage. 23(3), 439–451 (2015).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Li, X. G., Rengel, Z. & Mapfumo, E. Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290(1), 269–282 (2007).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kemmitt, S. J., Wright, D., Goulding, K. W. & Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38(5), 898–911 (2006).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Sihi, D., Inglett, P. W., Gerber, S. & Inglett, K. S. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. 24(1), e259–e274 (2018).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17(2), 798–818 (2011).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Sun, Z. et al. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant Soil 443(1–2), 463–471 (2019).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Wang, H. et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Sci. Rep. 6, 27097 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 67.

    Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 647, 1230–1238 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Meier, I. C., Finzi, A. C. & Phillips, R. P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 106, 119–128 (2017).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Strand, L. T., Abrahamsen, G. & Stuanes, A. O. Leaching from organic matter-rich soils by rain of different qualities: I Concentrations. J. Environ. Qual. 31(2), 547–556 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Liu, S. et al. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover. Soil Biol. Biochem. 77, 197–202 (2014).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Liu, C. P. & Sheu, B. H. Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. For. Ecol. Manage. 172(2–3), 315–325 (2003).

    Article 

    Google Scholar 

  • 72.

    Biederbeck, V. O., Janzen, H. H., Campbell, C. A. & Zentner, R. P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol. Biochem. 26(12), 1647–1656 (1994).

    CAS 
    Article 

    Google Scholar 

  • 73.

    García-Díaz, A., Marqués, M. J., Sastre, B. & Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 621, 387–397 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 74.

    Yuan, Y., Zhao, Z., Li, X., Wang, Y. & Bai, Z. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 75.

    Yang, X. et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J. Soils Sediments 18(4), 1569–1578 (2018).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Soucémarianadin, L. N. et al. Environmental factors controlling soil organic carbon stability in French forest soils. Plant Soil 426(1–2), 267–286 (2018).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Mueller, T., Jensen, L. S., Nielsen, N. E. & Magid, J. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol. Biochem. 30(5), 561–571 (1998).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Oades, J. M., Vassallo, A. M., Waters, A. G. & Wilson, M. A. Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Res. 25(1), 71–82 (1987).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Li, Q. et al. Consistent temperature sensitivity of labile soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. Appl. Soil Ecol. 117, 32–37 (2017).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23(10), 4430–4439 (2017).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Yang, K. & Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 265, 280–294 (2019).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Oztas, T. & Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. CATENA 52(1), 1–8 (2003).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Yang, Y. et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil 323(1–2), 153–162 (2009).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Kreyling, J., Beierkuhnlein, C. & Jentsch, A. Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 11(1), 65–75 (2010).

    Article 

    Google Scholar 

  • 85.

    Guglielmin, M., Evans, C. J. E. & Cannone, N. Active layer thermal regime under different vegetation conditions in permafrost areas: A case study at Signy Island (Maritime Antarctica). Geoderma 144(1–2), 73–85 (2008).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Herrmann, A. & Witter, E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biol. Biochem. 34(10), 1495–1505 (2002).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Zhu, E. et al. Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biol. Biochem. 141, 107684 (2020).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Tian, J., Branfireun, B. A. & Lindo, Z. Global change alters peatland carbon cycling through plant biomass allocation. Plant Soil 455, 1–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • 89.

    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 90.

    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).

    Article 
    CAS 

    Google Scholar 

  • 91.

    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 92.

    Sun, T., Wang, Y., Hui, D., Jing, X. & Feng, W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 148, 107905 (2020).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Li, X. G., Li, F. M., Zed, R. & Zhan, Z. Y. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 139(1–2), 98–105 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 94.

    Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 95.

    Ghosh, A. et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res. 177, 134–144 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae