Water, energy and climate benefits of urban greening throughout Europe under different climatic scenarios

Calculation of the indicators

Figure 1 shows the distribution of the urban greening benefit indicators computed at European scale under the current scenario, while Fig. 2 shows the cumulative distribution of impervious urban areas by increasing value of each indicator, under the current and future scenarios. It should be stressed that, while the indicators of Eqs. (1–4) are computed for every grid cell, the curves of Fig. 2 reflect also the spatial distribution of impervious urban surfaces, and hence they give more prominence to the values of the indicators in the most densely urbanized areas of the continent.

Figure 1

Maps of benefits per m2 across Europe for ΔTs (a), ΔT (b), RR/P (c) and CB (d), in the present scenario.

Full size image
Figure 2

Cumulative curves of urban surfaces versus the indicator ΔTs (a), ΔT (b), RR/P (c) and CB (d). The black line represents present conditions, while lines in color stand each for one climatic scenario. The y-axis is the cumulative surface area of the present European urban areas.

Full size image

The reduction of surface temperature ΔTs (Fig. 1a) is highest in the warmer and not excessively dry climates of Central and Southern Europe, reflecting the patterns of actual evapotranspiration. Most European urban areas would achieve temperature reductions of about 3–3.5 °C (Fig. 2a), slightly increasing with the severity of climate heating under the various scenarios, causing a reduction of sensible heat to the atmosphere, a driver of urban heat island effects, between 20 and 40% (see Appendix 1, Supplementary Material for further details). The highest temperature reduction at the roof surface, ΔT, is mostly perceived in the South of Europe (Fig. 1b), consistent with the pattern of potential evapotranspiration, similarly to the production of dry biomass CB (Fig. 1d). The reduction of temperature at the roof is predicted between 15 and 17 °C for most of Europe under the current scenario, and may increase of about 2 °C under the most severe climate scenario (Fig. 2b). Runoff reduction is significantly higher in areas with moderate precipitation, particularly in the plains, compared to rainier areas such as the Atlantic edge of the continent and high mountain ranges (Fig. 1c).

The maximum storage volume, Vmax , calculated by Eq. 6, would allow to reuse 92% of the annual runoff, while Vmin and Vavg would allow to store 77% and 86% of the runoff, respectively, as resulting from a daily balance of the storage volume calculated over the 14 year time series. As the storage volume normalized to the annual runoff Rc is 0.24, 0.36 and 0.51 for Vmin, Vavg and Vmax, respectively (Figure 4b), choosing a storage volume equal to Vmin appears to be the most cost-effective solution. Vmin is mapped as shown in Fig. 3a for the case of constant demand, under the current scenario, while in Fig. 3b the volumes are plotted versus the cumulated areas.

Figure 3

Storage volume Vmin required to store the runoff in the case of constant demand.

Full size image
Figure 4

Runoff that could be harvested, and normalized storage volume Vmin versus the annual average runoff (Rc) for the case of constant withdrawal, calculated throughout the 14 year time series.

Full size image

Physical and environmental implications

These potential effects of green surfaces at European scale correspond to potential benefits. The total benefits extrapolated for the EU are summarized in Table 1. Results are referred to the impervious surfaces corresponding to building roofs, that are assumed to amount to a total of 26,450 km2 as per Bódis et al.40 . This represents 35% of the European impervious surface. Although it is highly unlikely that the majority of the roofs may support a uniform soil cover of 30 cm, they could still bear patches of that thickness over a part of their surface. Moreover, additional surfaces such as sealed ground could be greened. Overall, having in mind these considerations, we pragmatically regard this 35% of impervious urban areas as a maximum extent that could be greened in Europe. All benefits calculated below would obviously scale proportionally for any reduction of the percentage of area subjected to greening. The quantification of Table 1 is explained below.

Table 1 Climatic descriptors and quantification of annual benefits at the European scale in the present and future climatic scenarios, assuming to green all roof surfaces, or 35% of the European impervious surfaces.
Full size table

The reduction of land surface temperatures, ΔTs, reduces the thermal irradiation and convective heat flux from urban surfaces (see Appendix 1 of Supplementary Material), which are the drivers of the heat island effect44. As a first order approximation, the reduction of air temperature at 2 m from the surfaces can be expected to be about a half of ΔTs45 as an average value in summer. The reduction of air temperature would generate economic benefits, like the life cycle extension of electronic material and cars, benefits in the health and transport sectors, reduction of social stress and morbidity, and reduction of damages to trees and animals46,47,48.

The reduction of the surface temperature ΔT potentially reduces the cooling demand in summer (Eq. 5) by 92 TWh year−1. This energy saving corresponds to 29.9 Mtons of CO2 for the present scenario, considering emissions of 0.325 kg CO2 equivalent kWh−1 for European electricity39. Our estimate is arguably an upper limit of cooling energy savings. In many cases, underroof spaces of buildings are not cooled and effectively work already as an insulation, hence the reduction in the heat transferred from the roofs to underlying inhabited spaces may be lower than we estimate.

The yearly produced biomass CB is a benefit in itself whenever the biomass may be used (e.g. crops from urban agriculture). However, more importantly, it may be appraised in terms of carbon and carbon dioxide sequestration. The carbon dioxide sequestered from the atmosphere through biomass growth is 25.9 Mtons year−1 in the present scenario. This must be summed to the reduction of carbon emission following the expected decrease in cooling energy use for a total of 55.8 Mtons, or about 1.2% of the 4500 Mtons CO2 produced in the EU every year37.

It should be stressed that carbon dioxide sequestration by the biomass in green roofs is effective only if residues are not significantly degraded. This may be achieved by removing the biomass periodically before it undergoes respiration and mineralization. One could alternatively employ woody plants with a higher carbon accumulation capacity instead of herbaceous vegetation. Although our calculations are referred to a herbaceous annual crop, the results in terms of dry biomass would not be radically different had we considered a tree or shrub crop, as the dry matter potentially produced per unit surface is relatively independent of the plant49. On the other hand, trees and shrubs may be expected to have higher evapotranspiration, thus enhancing the benefits quantified here for a herbaceous crop.

If greening is implemented on about 35% of the impervious urban areas, we expect a reduction of runoff in the order of 17.5% compared to the total. Considering that pollutant loads associated to runoff are estimated in the order of about 30 million population equivalents (PE) in terms of biochemical oxygen demand (BOD), about 18 million PE in terms of total nitrogen and about 6 million PE in terms of total phosphorus 6,35, this can be a sizable contribution to the treatment of pollution from European urban areas. Besides the reduction of runoff volume, greened surfaces may also help reduce the frequency of combined sewer overflows because they buffer runoff and release it more slowly than impervious surfaces. This effect is arguably more important for smaller storm events, and tends to disappear as events cause the saturation of green roof storage.

It should be stressed that the above analysis considers a soil thickness of 30 cm on greened surfaces. Using the meta-models proposed in30 for the thickness of 10 cm we obtain a ratio between the indicators for thickness of 10 and 30 cm ranging between 80–97% for the reduction of surface temperatures, 55–57% for roof temperatures, 47–57% for biomass, and 84–86% for runoff. Soil thickness affects in particular the roof temperature, due to the associated thermal insulation effect, and the biomass, because a thicker soil can store a larger amount of water and allows a higher evapotranspiration for vegetation growth, while not impeding root growth. A comparison of different climate scenarios sheds light on the sensitivity of our results to the input climatic predictors (P and ET0). From Table 1, it can be calculated that the range (difference between the maximum and minimum value) of precipitation and potential evapotranspiration, as a percentage of the average value, is 20.3%, and 21.4% respectively. The corresponding ranges are 7% of the average for the cooling reduction, 3.7% for the reduced carbon dioxide emission, and 34% for the runoff reduction. The curves in Fig. 2 visualize the relatively small sensitivity of results to the climatic scenario.

Economic implications

Most of the benefits of green roofs are collective. Only a few (e.g. energy saving in summer, and gardening) have an apparent private nature. The costs of greening roofs, on the contrary, are primarily borne by the private owners50. It has been observed that, in the absence of specific incentives, green roof implementation can be economically convenient only for specific commercial and multifamily buildings25. Therefore, private investments should be encouraged through appropriate fiscal and funding policies if the objective is to facilitate a mainstream uptake of this solution. In this section, an indicative cost-benefit analysis is carried out in order to shed light on the possible financing needs at stake, and considering to green the impervious surfaces covered by roofs.

The two main benefits that can be easily monetized are the avoided cost of cooling in summer (based on energy prices) and the reduction of carbon dioxide emissions (based on greenhouse gas emissions market prices). By summing the results of Eq. (5) for all gridcells in Europe where the greened surface is assumed to be 35% of the impervious urban area in the gridcell, cooling savings can reach 18.4 billion Є each year for the current scenario. For comparison, the current expenditure for residential cooling in summer can be assumed to be 78 billion Є year−1, based on an electricity use of 391 TWh51. Therefore, the cooling energy saving is 23.5% (18.4 billion Є/78 billion Є), in agreement with the results of Manso et al.15 for the value of 15% estimated for the hot-summer Mediterranean climate.

At the present carbon market price of 22.5 Є tons−1 (Ruf and Mazzoni43), the annual benefit related to the estimated reduction of greenhouse gas emissions corresponds to about 1.26 billion Є. It should be stressed how this is apparently an upper limit of this benefit, because not all greened surfaces may correspond to roofs of cooled building volumes, and because the biomass is likely to undergo at least a partial mineralization if not timely removed from the green surfaces. 

The benefit associated to the reduction of the heat island effect can also be quantified to some extent on the basis of existing literature studies, although their estimation is very complex and would require ad hoc studies. For example, for the city of Phoenix, this benefit was quantified in 80 € for 1 °C decrease per working resident, considering costs of electronic devices, maintenance of cars and performance of cooling47. In another analysis for the Melbourne area, the annual cost was quantified in 18 € per inhabitant, including health, transport, social distress, electric grid faults and damages to animal and trees48. In Malaysia, the annual cost of hazes, related to the urban heat island, was quantified in 12 € per habitant in 1997, including cost of illness, productivity loss, flight cancellation, tourism reduction, decline in fish landings, fire-fighting, cloud seeding and masks46. Therefore, costs can vary significantly among different contexts. Assuming conservatively a yearly benefit of 20 € for each of the ca. 559.5 million European urban inhabitants living in urban areas (75% of the total52), the Net Present Value (NPV) of this benefit over 40 years would be 221 billion € using a discount rate of 4%.

The cost of greening the roofs or other impervious surfaces is more difficult to quantify as it depends on several design details and site-specific conditions. For example, in Finland the cost ranges between 70 and 80 Є m−2, in Germany between 13 and 41 Є m−2, while in Switzerland around 20 Є m−253. Assuming an average unit cost of 50 Є m−2, the costs to turn 26,450 km2 of impervious urban areas in Europe into green surfaces amounts to 1323 billion Є. This corresponds to an annual cost (discount rate 4%, 40 years life) of 63 billion euro. This means a cost of 6.3 € m−3 of annual runoff saved (assuming an average annual runoff saving of 10 km3), which is reasonably in line with an estimate of 9.2 € m−3 for the U.S. context, where the annual runoff volume reduction was 12%54 compared to our estimate of 17.5%.

Assuming a lifespan of 40 years55 and a discount rate of 4%50, the NPV of the cost saving of summer cooling over 40 years (18.4 billion Є year−1 in Table 1), that is the main private benefit of a green roof installed in a private building, is 364 billion Є (using a discount rate of 4%). The benefits of CO2 reduction, monetized in an emission trading system, would lead to a NPV of 24.85 ≈ 25 billion Є over 40 years (55.8 Mtons year−1). The NPV of the heat island benefit over 40 years would be 221 billion €. Deducting the sum of these benefits (totalling 610 billion €) from the estimated investment of 1323 billion €, yields a net gap of 713 billion Є, corresponding to an annual cost of about 60 € for each of the 559.5 million European citizens living in urban areas. This estimated annual cost is apparently affected by the uncertainty on green roof costs: it could reduce to 4 Є/year per urban citizen if the cost of the green roof is 25 Є m−2, and 129 Є/year per urban citizen if the cost is 80 Є m−2. An annual cost of 60 Є/year per urban citizen may be in many cases compensated by the additional benefits not quantified here. For example, the average increase of property value (rental prices) was estimated to be 8%15. Other benefits can be associated e.g. to leisure and recreation, socialization, amenity of the urban environment, and the creation of habitat or ecological connections in urban areas, besides the abovementioned positive effects in terms of water pollution and floods. Table 2 summarizes the economic results. 

Table 2 Summary of benefits and costs of urban greening considered in this study for the European context.
Full size table

The harvesting of runoff is a potential additional benefit, but it also entails costs. These can be quantified as a first approximation considering a cost of the storage volume Cs = 50 € m−3, a lifetime of the storage of 100 years, a discount rate of 4% and annual operation and maintenance costs of 3% of the investment. For a unit greened surface, the runoff potentially harvested equals PRR and can be computed from Eq. 3, while the required storage volume to harvest it is given by Eq. 6. The cost of harvesting one m3 of runoff (marginal harvesting costs) follows from the abovementioned costing parameters. Figure 5 depicts the cumulate value of runoff as a function of the marginal harvesting cost. It can be seen that about 75% of the runoff can be harvested with marginal costs below 0.7 € m−3, a value compatible with urban water prices usually applied in Europe. Cs may be lower than 50 € m−3 , but often it may also be higher. Hence our calculation can be only regarded as a first indication and is accurate not more than within one order of magnitude. The quality of water from green surface runoff harvesting is arguably adequate for non-potable domestic use, but depends on the type of green roof and vegetation13.

Figure 5

Cumulate runoff versus the cost of storage per unit of runoff, for a storage cost of 50 € m−3. Different climatic scenarios are shown.

Full size image

Source: Ecology -

MIT J-WAFS awards eight grants in seventh round of seed funding

Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific