in

Widespread deoxygenation of temperate lakes

[adace-ad id="91168"]
  • 1.

    Wetzel, R. G. In Limnology 3rd edn (ed. Wetzel, R. G.), Ch. 9, 151–168 (Academic Press, 2001).

  • 2.

    Schindler, D. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 3.

    North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).

    Article 
    ADS 

    Google Scholar 

  • 4.

    Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, (2018).

  • 8.

    Jankowski, J., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).

    Article 
    ADS 

    Google Scholar 

  • 9.

    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).

    Article 

    Google Scholar 

  • 10.

    Seki, H., Takahashi, Y., Hara, Y. & Ichimura, S. Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura, Japan. Water Res. 14, 179–183 (1980).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Jacobson, P. C., Stefan, H. G. & Pereira, D. L. Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can. J. Fish. Aquat. Sci. 67, 2002–2013 (2010).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).

    Article 

    Google Scholar 

  • 13.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 14.

    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).

    Article 

    Google Scholar 

  • 16.

    Zhang, Y. et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 75, 249–258 (2015).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Bouffard, D., Ackerman, J. D. & Boegman, L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Wat. Resour. Res. 49, 2380–2394 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 18.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    ADS 

    Google Scholar 

  • 19.

    Nürnberg, G. K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 12, 432–447 (1996).

    Article 

    Google Scholar 

  • 20.

    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 21.

    Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).

    PubMed 

    Google Scholar 

  • 23.

    Winslow, L. A., Leach, T. A. & Rose, K. C. Global lake response to the recent warming hiatus. Environ. Res. Lett. 13, 054005 (2018).

    Article 
    ADS 

    Google Scholar 

  • 24.

    Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Verh. Int. Ver. Limnol. 26, 822–828 (1997).

    Google Scholar 

  • 25.

    Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, (2015).

  • 26.

    Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016).

    Article 

    Google Scholar 

  • 27.

    Woolway, R. I. et al. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019).

    Article 
    ADS 

    Google Scholar 

  • 28.

    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011). 

    Article 

    Google Scholar 

  • 29.

    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2017).

  • 30.

    Borchers, H. W. pracma: Practical Numerical Math Functions. R package version 2.1.5 https://CRAN.R-project.org/package=pracma (2018).

  • 31.

    Winslow, L. A. et al. rLakeAnalyzer: Lake Physics Tools. R package version 1.11.4. https://CRAN.R-project.org/package=rLakeAnalyzer (2017).

  • 32.

    Winslow, L. A. et al. LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Carslaw, D. C. & Ropkins, K. Openair – an R package for air quality data analysis. Environ. Model. Softw. 27-28, 52–61 (2012).

    Article 

    Google Scholar 

  • 34.

    Moran, P. A. P. The interpretation of statistical maps. J. R. Stat. Soc. B 10, 243–251 (1948).

    MathSciNet 
    MATH 

    Google Scholar 

  • 35.

    Kalogirou, S. lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools. R package version 0.2-7. https://CRAN.R-project.org/package=lctools (2019).

  • 36.

    Copernicus Climate Change Service (C3S). ERA5: Climate Data Store (CDS) https://cds.climate.copernicus.eu/cdsapp#!/home (accessed 1 October 2019).

  • 37.

    Gelman, G. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).

  • 38.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

  • 39.

    Lumley, T. leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps (2020).

  • 40.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).

    Book 

    Google Scholar 

  • 41.

    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

  • 42.

    Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Springer, 2000).

  • 43.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article 

    Google Scholar 

  • 44.

    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression 2nd edn (John Wiley and Sons, Inc., 2000).

  • 45.

    Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 81, 345–354 (2015).

    Google Scholar 

  • 46.

    Lele, S. R., Keim, J. L. & Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability Data. R package version 0.3-2. https://CRAN.R-project.org/package=ResourceSelection (2017).

  • 47.

    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Article 

    Google Scholar 

  • 48.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 49.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Stetler, J. T., Jane, S. F., Mincer, J. L., Sanders, M. N. & Rose, K. C. Long-term lake dissolved oxygen and temperature data, 1941–2018 ver 2. Environmental Data Initiative https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56 (2021).

  • 51.

    Adrian, R., Jane, S. F., & Rose, K. C. Widespread deoxygenation of temperate lakes – Müggelsee data. IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries dataset. https://doi.org/10.18728/568.0 (2021).

  • 52.

    Jenny, J.-P. Time series dataset of dissolved oxygen, water temperature and Secchi depths profiles in Lakes Annecy and Geneva. Portail Data INRAE V1, https://doi.org/10.15454/BUJUSX (2021).


  • Source: Ecology - nature.com

    Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil

    From gas to solar, bringing meaningful change to Nigeria’s energy systems