in

Worker-dependent gut symbiosis in an ant

[adace-ad id="91168"]
  • 1.

    Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2:593–602.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Bourtzis K, Miller T (eds). Insect symbiosis. (CRC Press, Boca Raton, 2003)

  • 5.

    West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Currie CR. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol. 2001;55:357–80.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, et al. The Ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol. 2002;47:733–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.

    Article 

    Google Scholar 

  • 10.

    Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hôlldobler B, et al. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996;21:479–89.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Zientz E, Dandekar T, Gross R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004;68:745–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Currie CR, Summerbell RC, Scott JA, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 1999;423:461–461.

    Article 
    CAS 

    Google Scholar 

  • 13.

    Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973 https://doi.org/10.1038/ncomms15973

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Hölldobler B, Wilson EO (eds). The ants. (Harvard University Press, Springer-Verlag, 1990).

  • 16.

    Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front Microbiol. 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.01942

    Article 

    Google Scholar 

  • 18.

    Segers FH, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol. 2009;9:13450–67.

    Article 

    Google Scholar 

  • 19.

    Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE. 2015;10:e0123911 https://doi.org/10.1371/journal.pone.0123911

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus‐farming termite. Proc Natl Acad Sci USA. 2014;111:14500–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Russell JA, Sanders JG, Moreau CS. Hotspots for symbiosis: Function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News. 2017;24:43–69.

    Google Scholar 

  • 23.

    Bourke AFG. Colony size, social complexity and reproductive conflict in social insects. J Evol Biol. 1999;12:245–57.

    Article 

    Google Scholar 

  • 24.

    Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006;312:101–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Peeters C, Crewe R. Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften. 1984;71:l50–51.

    Article 

    Google Scholar 

  • 26.

    Kikuchi T, Nakagawa T, Tsuji K. Changes in relative importance of multiple social regulatory forces with colony size in the ant Diacamma sp. from Japan. Anim Behav. 2008;76:2069–77.

    Article 

    Google Scholar 

  • 27.

    Fukumoto Y, Abe T, Taki A. A novel form of colony organization in the ‘queenless’ ant Diacamma rugosum. Physiol Ecol Jpn. 1989;26:55–61.

    Google Scholar 

  • 28.

    Nakata K. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol. 1995;13:113–23.

    Article 

    Google Scholar 

  • 29.

    Nakata K. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J Ins Behav. 1996;9:557–69.

    Article 

    Google Scholar 

  • 30.

    Shimoji H, Kasutani N, Ogawa S, Hojo MK. Worker propensity affects flexible task reversion in an ant. Behav Ecol Sociobiol. 2020;74:92.

    Article 

    Google Scholar 

  • 31.

    Peeters C, Tsuji K. Reproductive conflict among ant workers in Diacamma sp. from Japan: dominance and oviposition in the absence of the gamergate. Ins Soc. 1993;40:119–36.

    Article 

    Google Scholar 

  • 32.

    Shimoji H, Fujiki Y, Yamaoka R, Tsuji K. Egg discrimination by workers in Diacamma sp. from Japan. Ins Soc. 2012;59:201–6.

    Article 

    Google Scholar 

  • 33.

    Okada Y, Watanabe Y, Tin MMY, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol. 2017;26:2922–38.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Fujioka H, Abe MS, Fuchikawa T, Tsuji K, Shimada M, Okada Y. Ant circadian activity associated with brood care type. Biol Lett. 2017;13:13–16.

    Article 

    Google Scholar 

  • 35.

    Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, et al. Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol. 2014;5:457 https://doi.org/10.3389/fmicb.2014.00457

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Itoh H, Aita M, Nagayama A, Meng XY, Kamagata Y, Navarro R, et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug Cavelerius saccharivorus (Heteroptera: Blissidae). Appl Environ Microbiol. 2014;80:5974–83.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Kawano K, Ushijima N, Kihara M, Itoh H. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol. 2020;70:4119–29.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol. 2012;78:4149–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Koga R, Tsuchida T, Fukatsu T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool. 2009;44:281–91.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Funaro CF, Kronauer DJ, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol. 2011;77:346–50.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer D, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Scott JJ, Budsberg KJ, Suen G, Wixon DL, Balser TC, Currie CR. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PloS ONE. 2010;5:e9922 https://doi.org/10.1371/journal.pone.0009922

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Yang H, Schmitt-Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol. 2005;7:916–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    King JH, Mahadi NM, Bong CF, Ong KH, Hassan O. Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern. Insect Sci. 2014;21:584–96.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Koto A, Nobu MK, Miyazaki R. Deep sequencing uncovers caste-associated diversity of symbionts in the social ant Camponotus japonicus. mBio. 2020;11:e00408–20. https://doi.org/10.1128/mBio.00408-20

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Lombardo MP. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol. 2008;62:479–97.

    Article 

    Google Scholar 

  • 55.

    Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Moreau CS. Symbioses among ants and microbes. Curr Opin Ins Sci. 2020;39:1–5.

    Article 

    Google Scholar 

  • 57.

    Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9. 2005

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Blochmann F. Über das Vorkommen bakterienähnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zbl Bakt. 1882;11:234–40.

    Google Scholar 

  • 60.

    Kupper M, Stigloher C, Feldhaar H, Gross R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthropod Struct Dev. 2016;45:475–87.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Rafiqi AM, Rajakumar A, Abouheif E. Origin and elaboration of a major evolutionary transition in individuality. Nature. 2020;585:239–44.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 62.

    Wilkinson DM. Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos. 2001;92:377–84.

    Article 

    Google Scholar 

  • 63.

    Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev. 1993;57:293–319.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Shang Y, Feng P, Wang C. Fungi that infect insects: altering host behavior and beyond. PLoS Pathogen. 2015;11:e1005037 https://doi.org/10.1371/journal.ppat.1005037

    CAS 
    Article 

    Google Scholar 

  • 65.

    Hughes DP, Araújo JP, Loreto RG, Quevillon L, de Bekker C, Evans HC. From so Simple a Beginning: The Evolution of Behavioral Manipulation by Fungi. Adv Genet. 2016;94:437–69.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet. 2016;94:1–39.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Cremer S, Armitage SAO, Schmid-Hempel P. Social immunity. Curr Biol. 2007;17:R693–R702.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Mersch DP, Crespi A, Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. 2013;340:1090–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Hart AG, Anderson C, Ratnieks FLW. Task partitioning in leafcutting ants. acta ethol. 2002;5:1–11.

    Article 

    Google Scholar 

  • 70.

    Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J Ins Physiol. 2010;56:288–95.

    CAS 
    Article 

    Google Scholar 

  • 71.

    Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, et al. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. Ins Mol Biol. 2021;30:113–21.

    CAS 
    Article 

    Google Scholar 

  • 72.

    Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964 https://doi.org/10.1038/s41467-018-03357-y

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Kikuta N, Tsuji K. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav Ecol Sociobiol. 1999;46:180–9.

    Article 

    Google Scholar 

  • 75.

    Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218:1091–8.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. Social enforcement depending on the stage of colony growth in an ant. Proce R Soc B. 2018;285:20172548.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia