in

Challenges of managing harmful algal blooms in US drinking water systems

[adace-ad id="91168"]
  • 1.

    Hudnell, H. K. The state of US freshwater harmful algal blooms assessments, policy and legislation. Toxicon 55, 1024–1034 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Hudnell, H. K. & Dortch, Q. in Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (ed. Hudnell, H. K.) 17–43 (Springer, 2008).

  • 3.

    Loftin, K. A. et al. Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56, 77–90 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2009).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Jetoo, S., Grover, V. I. & Krantzberg, G. The Toledo drinking water advisory: suggested application of the water safety planning approach. Sustainability 7, 9787–9808 (2015).

    Article 

    Google Scholar 

  • 6.

    Water Advisory After-Action Assessment (Novak Consulting Group, 2018).

  • 7.

    Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).

    Article 

    Google Scholar 

  • 9.

    A Compilation of Cost Data Associated with the Impacts and Control of Nutrient Pollution EPA 820-F-15-096 (EPA, 2015).

  • 10.

    Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6–13 (2016).

    CAS 
    Article 

    Google Scholar 

  • 11.

    He, X. et al. Toxic cyanobacteria and drinking water: impacts, detection, and treatment. Harmful Algae 54, 174–193 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water EPA 815-R-15-010 (EPA, 2015).

  • 13.

    Zamyadi, A. et al. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge. Water Res. 46, 1511–1523 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Walker, B. & Wathen, E. Across US, Toxic Blooms Pollute Lakes (EWG, 2018); https://www.ewg.org/toxicalgalblooms/

  • 15.

    Carmichael, W. W. & Boyer, G. L. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 54, 194–212 (2016).

    Article 

    Google Scholar 

  • 16.

    Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Ho, J. C. & Michalak, A. M. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J. Great Lakes Res. 41, 317–325 (2015).

    Article 

    Google Scholar 

  • 18.

    Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Mullin, C. A. & Kirchhoff, C. J. Marshaling adaptive capacities within an adaptive management framework to enhance the resiliency of wastewater systems. J. Am. Water Resour. Assoc. 55, 906–919 (2019).

    Article 

    Google Scholar 

  • 22.

    Henrie, T., Plummer, S. & Roberson, J. A. Occurrence and state approaches for addressing cyanotoxins in US drinking water. J. Am. Water Works Assoc. 109, 40–47 (2017).

    Article 

    Google Scholar 

  • 23.

    EPA drinking water health advisories for cyanotoxins. EPA https://www.epa.gov/cyanohabs/epa-drinking-water-health-advisories-cyanotoxins (accessed 25 April 2021).

  • 24.

    Watson, S. B. et al. in Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D. et al.) 873–920 (Academic Press, 2015); https://doi.org/10.1016/B978-0-12-385876-4.00020-7

  • 25.

    Moore, S. K. et al. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 7, S4 (2008).

    Article 

    Google Scholar 

  • 26.

    Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002).

    Article 

    Google Scholar 

  • 27.

    Olson, G., Wilczak, A., Boozarpour, M., Degraca, A. & Weintraub, J. M. Evaluating and prioritizing contaminants of emerging concern in drinking water. J. Am. Water Works Assoc. 109, 54–63 (2017).

    Article 

    Google Scholar 

  • 28.

    The Fourth Unregulated Contaminant Monitoring Rule (UCMR 4): Data Summary, April 2021 (EPA, 2021).

  • 29.

    Beversdorf, L. J. et al. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin. Water Res. 140, 280–290 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Almuhtaram, H., Cui, Y., Zamyadi, A. & Hofmann, R. Cyanotoxins and cyanobacteria cell accumulations in drinking water treatment plants with a low risk of bloom formation at the source. Toxins 10, 430 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Wolf, D. & Klaiber, H. A. Bloom and bust: toxic algae’s impact on nearby property values. Ecol. Econ. 135, 209–221 (2017).

    Article 

    Google Scholar 

  • 32.

    Smith, E. A., Blanchard, P. B. & Bargu, S. Education and public outreach concerning freshwater harmful algal blooms in southern Louisiana. Harmful Algae 35, 38–45 (2014).

    Article 

    Google Scholar 

  • 33.

    Brisson, G., Dubé, K., Doyon, S. & Lévesque, B. Social construction of cyanobacteria blooms in Quebec: a matter of perceptions and risk management. Sage Open 7, 1–10 (2017).

    Article 

    Google Scholar 

  • 34.

    Zhang, W. & Sohngen, B. Do US anglers care about harmful algal blooms? A discrete choice experiment of Lake Erie recreational anglers. Am. J. Agric. Econ. 100, 868–888 (2018).

    Article 

    Google Scholar 

  • 35.

    McCarty, C. L. et al. Community needs assessment after microcystin toxin contamination of a municipal water supply—Lucas County, Ohio, September 2014. Morb. Mortal Wkly Rep. 65, 925–929 (2016).

    Article 

    Google Scholar 

  • 36.

    Wilson, R. S., Howard, G. & Burnett, E. A. Improving nutrient management practices in agriculture: the role of risk-based beliefs in understanding farmers’ attitudes toward taking additional action. Water Resour. Res. 5, 6735–6746 (2014).

    Article 

    Google Scholar 

  • 37.

    Renn, O. The social amplification/attenuation of risk framework: application to climate change. Wiley Interdiscip. Rev. Clim. Change 2, 154–169 (2011).

    Article 

    Google Scholar 

  • 38.

    Breakwell, G. M. Models of risk construction: some applications to climate change. Wiley Interdiscip. Rev. Clim. Change 1, 857–870 (2010).

    Article 

    Google Scholar 

  • 39.

    Kirchhoff, C. J. & Watson, P. L. Are wastewater systems adapting to climate change? J. Am. Water Resour. Assoc. 55, 869–880 (2019).

    Article 

    Google Scholar 

  • 40.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Soane, E. et al. Flood perception and mitigation: the role of severity, agency, and experience in the purchase of flood protection, and the communication of flood information. Environ. Plan. A 42, 3023–3038 (2010).

    Article 

    Google Scholar 

  • 42.

    Wachinger, G., Renn, O., Begg, C. & Kuhlicke, C. The risk perception paradox—implications for governance and communication of natural hazards. Risk Anal. 33, 1049–1065 (2013).

    Article 

    Google Scholar 

  • 43.

    Dittrich, R., Wreford, A., Butler, A. & Moran, D. The impact of flood action groups on the uptake of flood management measures. Climatic Change 138, 471–489 (2016).

    Article 

    Google Scholar 

  • 44.

    Pahl-Wostl, C. An evolutionary perspective on water governance: from understanding to transformation. Water Resour. Manag. 31, 2917–2932 (2017).

    Article 

    Google Scholar 

  • 45.

    Dilling, L., Daly, M. E., Travis, W. R., Wilhelmi, O. V. & Klein, R. A. The dynamics of vulnerability: why adapting to climate variability will not always prepare us for climate change. Wiley Interdiscip. Rev. Clim. Change 6, 413–425 (2015).

    Article 

    Google Scholar 

  • 46.

    Coastal SEES: Lake Erie. Notes from October 26 workshop titled The Future of Harmful Algal Blooms held at Ottawa National Wildlife Refuge (2018).

  • 47.

    Gerding, J. A. et al. Uncovering environmental health: an initial assessment of the profession’s health department workforce and practice. J. Environ. Health 81, 24–33 (2019).

    Google Scholar 

  • 48.

    Bazerman, M. H. Climate change as a predictable surprise. Climatic Change 77, 179–193 (2006).

    Article 

    Google Scholar 

  • 49.

    Bolson, J., Martinez, C., Breuer, N., Srivastava, P. & Knox, P. Climate information use among southeast US water managers: beyond barriers and toward opportunities. Reg. Environ. Change 13, 141–151 (2013).

    Article 

    Google Scholar 

  • 50.

    Kirchhoff, C. J. Understanding and enhancing climate information use in water management. Climatic Change 119, 495–509 (2013).

    Article 

    Google Scholar 

  • 51.

    Lemos, M. C., Kirchhoff, C. J. & Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Change 2, 789–794 (2012).

    Article 

    Google Scholar 

  • 52.

    Dillman, D. A., Smyth, J. D. & Christian, L. M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method (Wiley, 2014).

  • 53.

    Tourangeau, R. & Plewes, T. J. Nonresponse in Social Science Surveys: A Research Agenda (National Academic Press, 2013); https://doi.org/10.17226/18293

  • 54.

    Sánchez-Fernández, J., Muñoz-Leiva, F. & Montoro-Ríos, F. J. Improving retention rate and response quality in Web-based surveys. Comput. Human Behav. 28, 507–514 (2012).

    Article 

    Google Scholar 

  • 55.

    Hollister, J. W. & Kreakie, B. J. Associations between chlorophyll a and various microcystin health advisory concentrations. F1000Res. 5, 151 (2016).

    Google Scholar 

  • 56.

    RStudio Team RStudio: Integrated Development for R (RStudio, PBC, 2019).

  • 57.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).


  • Source: Resources - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya